Files
test/source/blender/render/intern/texture_pointdensity.cc
Hans Goudey 1c0f374ec3 Object: Move transform matrices to runtime struct
The `object_to_world` and `world_to_object` matrices are set during
depsgraph evaluation, calculated from the object's animated location,
rotation, scale, parenting, and constraints. It's confusing and
unnecessary to store them with the original data in DNA.

This commit moves them to `ObjectRuntime` and moves the matrices to
use the C++ `float4x4` type, giving the potential for simplified code
using the C++ abstractions. The matrices are accessible with functions
on `Object` directly since they are used so commonly. Though for write
access, directly using the runtime struct is necessary.

The inverse `world_to_object` matrix is often calculated before it's
used, even though it's calculated as part of depsgraph evaluation.
Long term we might not want to store this in `ObjectRuntime` at all,
and just calculate it on demand. Or at least we should remove the
redundant calculations. That should be done separately though.

Pull Request: https://projects.blender.org/blender/blender/pulls/118210
2024-02-14 16:14:49 +01:00

956 lines
25 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup render
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_kdopbvh.h"
#include "BLI_math_color.h"
#include "BLI_math_matrix.h"
#include "BLI_math_vector.h"
#include "BLI_noise.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_texture_types.h"
#include "BKE_colorband.hh"
#include "BKE_colortools.hh"
#include "BKE_customdata.hh"
#include "BKE_deform.hh"
#include "BKE_mesh.hh"
#include "BKE_object.hh"
#include "BKE_particle.h"
#include "BKE_scene.hh"
#include "DEG_depsgraph.hh"
#include "DEG_depsgraph_query.hh"
#include "RE_texture.h"
static ThreadMutex sample_mutex = PTHREAD_MUTEX_INITIALIZER;
enum {
POINT_DATA_VEL = 1 << 0,
POINT_DATA_LIFE = 1 << 1,
POINT_DATA_COLOR = 1 << 2,
};
static int point_data_used(PointDensity *pd)
{
int pd_bitflag = 0;
if (pd->source == TEX_PD_PSYS) {
if ((pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) ||
(pd->color_source == TEX_PD_COLOR_PARTVEL) || (pd->color_source == TEX_PD_COLOR_PARTSPEED))
{
pd_bitflag |= POINT_DATA_VEL;
}
if ((pd->color_source == TEX_PD_COLOR_PARTAGE) ||
(pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE))
{
pd_bitflag |= POINT_DATA_LIFE;
}
}
else if (pd->source == TEX_PD_OBJECT) {
if (ELEM(pd->ob_color_source,
TEX_PD_COLOR_VERTCOL,
TEX_PD_COLOR_VERTWEIGHT,
TEX_PD_COLOR_VERTNOR))
{
pd_bitflag |= POINT_DATA_COLOR;
}
}
return pd_bitflag;
}
static void point_data_pointers(PointDensity *pd,
float **r_data_velocity,
float **r_data_life,
float **r_data_color)
{
const int data_used = point_data_used(pd);
const int totpoint = pd->totpoints;
float *data = pd->point_data;
int offset = 0;
if (data_used & POINT_DATA_VEL) {
if (r_data_velocity) {
*r_data_velocity = data + offset;
}
offset += 3 * totpoint;
}
else {
if (r_data_velocity) {
*r_data_velocity = nullptr;
}
}
if (data_used & POINT_DATA_LIFE) {
if (r_data_life) {
*r_data_life = data + offset;
}
offset += totpoint;
}
else {
if (r_data_life) {
*r_data_life = nullptr;
}
}
if (data_used & POINT_DATA_COLOR) {
if (r_data_color) {
*r_data_color = data + offset;
}
offset += 3 * totpoint;
}
else {
if (r_data_color) {
*r_data_color = nullptr;
}
}
}
/* additional data stored alongside the point density BVH,
* accessible by point index number to retrieve other information
* such as particle velocity or lifetime */
static void alloc_point_data(PointDensity *pd)
{
const int totpoints = pd->totpoints;
int data_used = point_data_used(pd);
int data_size = 0;
if (data_used & POINT_DATA_VEL) {
/* store 3 channels of velocity data */
data_size += 3;
}
if (data_used & POINT_DATA_LIFE) {
/* store 1 channel of lifetime data */
data_size += 1;
}
if (data_used & POINT_DATA_COLOR) {
/* store 3 channels of RGB data */
data_size += 3;
}
if (data_size) {
pd->point_data = static_cast<float *>(
MEM_callocN(sizeof(float) * data_size * totpoints, "particle point data"));
}
}
static void pointdensity_cache_psys(
Depsgraph *depsgraph, Scene *scene, PointDensity *pd, Object *ob, ParticleSystem *psys)
{
ParticleKey state;
ParticleCacheKey *cache;
ParticleSimulationData sim = {nullptr};
ParticleData *pa = nullptr;
float cfra = BKE_scene_ctime_get(scene);
int i;
// int childexists = 0; /* UNUSED */
int total_particles;
int data_used;
float *data_vel, *data_life;
float partco[3];
const bool use_render_params = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
data_used = point_data_used(pd);
if (!psys_check_enabled(ob, psys, use_render_params)) {
return;
}
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
/* in case ob->world_to_object isn't up-to-date */
invert_m4_m4(ob->runtime->world_to_object.ptr(), ob->object_to_world().ptr());
total_particles = psys->totpart + psys->totchild;
psys_sim_data_init(&sim);
pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
pd->totpoints = total_particles;
alloc_point_data(pd);
point_data_pointers(pd, &data_vel, &data_life, nullptr);
#if 0 /* UNUSED */
if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT)) {
childexists = 1;
}
#endif
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
if (psys->part->type == PART_HAIR) {
/* hair particles */
if (i < psys->totpart && psys->pathcache) {
cache = psys->pathcache[i];
}
else if (i >= psys->totpart && psys->childcache) {
cache = psys->childcache[i - psys->totpart];
}
else {
continue;
}
cache += cache->segments; /* use endpoint */
copy_v3_v3(state.co, cache->co);
zero_v3(state.vel);
state.time = 0.0f;
}
else {
/* emitter particles */
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, false)) {
continue;
}
if (data_used & POINT_DATA_LIFE) {
if (i < psys->totpart) {
state.time = (cfra - pa->time) / pa->lifetime;
}
else {
ChildParticle *cpa = (psys->child + i) - psys->totpart;
float pa_birthtime, pa_dietime;
state.time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
}
}
}
copy_v3_v3(partco, state.co);
if (pd->psys_cache_space == TEX_PD_OBJECTSPACE) {
mul_m4_v3(ob->world_to_object().ptr(), partco);
}
else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
sub_v3_v3(partco, ob->loc);
}
else {
/* TEX_PD_WORLDSPACE */
}
BLI_bvhtree_insert(static_cast<BVHTree *>(pd->point_tree), i, partco, 1);
if (data_vel) {
data_vel[i * 3 + 0] = state.vel[0];
data_vel[i * 3 + 1] = state.vel[1];
data_vel[i * 3 + 2] = state.vel[2];
}
if (data_life) {
data_life[i] = state.time;
}
}
BLI_bvhtree_balance(static_cast<BVHTree *>(pd->point_tree));
psys_sim_data_free(&sim);
}
static void pointdensity_cache_vertex_color(PointDensity *pd,
Object * /*ob*/,
Mesh *mesh,
float *data_color)
{
const blender::Span<int> corner_verts = mesh->corner_verts();
const int totloop = mesh->corners_num;
char layername[MAX_CUSTOMDATA_LAYER_NAME];
int i;
BLI_assert(data_color);
if (!CustomData_has_layer(&mesh->corner_data, CD_PROP_BYTE_COLOR)) {
return;
}
CustomData_validate_layer_name(
&mesh->corner_data, CD_PROP_BYTE_COLOR, pd->vertex_attribute_name, layername);
const MLoopCol *mcol = static_cast<const MLoopCol *>(
CustomData_get_layer_named(&mesh->corner_data, CD_PROP_BYTE_COLOR, layername));
if (!mcol) {
return;
}
/* Stores the number of MLoops using the same vertex, so we can normalize colors. */
int *mcorners = static_cast<int *>(
MEM_callocN(sizeof(int) * pd->totpoints, "point density corner count"));
for (i = 0; i < totloop; i++) {
int v = corner_verts[i];
if (mcorners[v] == 0) {
rgb_uchar_to_float(&data_color[v * 3], &mcol[i].r);
}
else {
float col[3];
rgb_uchar_to_float(col, &mcol[i].r);
add_v3_v3(&data_color[v * 3], col);
}
++mcorners[v];
}
/* Normalize colors by averaging over mcorners.
* All the corners share the same vertex, ie. occupy the same point in space.
*/
for (i = 0; i < pd->totpoints; i++) {
if (mcorners[i] > 0) {
mul_v3_fl(&data_color[i * 3], 1.0f / mcorners[i]);
}
}
MEM_freeN(mcorners);
}
static void pointdensity_cache_vertex_weight(PointDensity *pd,
Object *ob,
Mesh *mesh,
float *data_color)
{
const int totvert = mesh->verts_num;
int mdef_index;
int i;
BLI_assert(data_color);
const MDeformVert *mdef = static_cast<const MDeformVert *>(
CustomData_get_layer(&mesh->vert_data, CD_MDEFORMVERT));
if (!mdef) {
return;
}
mdef_index = BKE_id_defgroup_name_index(&mesh->id, pd->vertex_attribute_name);
if (mdef_index < 0) {
mdef_index = BKE_object_defgroup_active_index_get(ob) - 1;
}
if (mdef_index < 0) {
return;
}
const MDeformVert *dv;
for (i = 0, dv = mdef; i < totvert; i++, dv++, data_color += 3) {
MDeformWeight *dw;
int j;
for (j = 0, dw = dv->dw; j < dv->totweight; j++, dw++) {
if (dw->def_nr == mdef_index) {
copy_v3_fl(data_color, dw->weight);
break;
}
}
}
}
static void pointdensity_cache_vertex_normal(Mesh *mesh, float *data_color)
{
BLI_assert(data_color);
const blender::Span<blender::float3> normals = mesh->vert_normals();
memcpy(data_color, normals.data(), sizeof(float[3]) * mesh->verts_num);
}
static void pointdensity_cache_object(PointDensity *pd, Object *ob)
{
float *data_color;
int i;
Mesh *mesh = static_cast<Mesh *>(ob->data);
#if 0 /* UNUSED */
CustomData_MeshMasks mask = CD_MASK_BAREMESH;
mask.fmask |= CD_MASK_MTFACE | CD_MASK_MCOL;
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
mask.lmask |= CD_MASK_PROP_BYTE_COLOR;
break;
case TEX_PD_COLOR_VERTWEIGHT:
mask.vmask |= CD_MASK_MDEFORMVERT;
break;
}
#endif
const blender::Span<blender::float3> positions = mesh->vert_positions(); /* local object space */
pd->totpoints = mesh->verts_num;
if (pd->totpoints == 0) {
return;
}
pd->point_tree = BLI_bvhtree_new(pd->totpoints, 0.0, 4, 6);
alloc_point_data(pd);
point_data_pointers(pd, nullptr, nullptr, &data_color);
for (i = 0; i < pd->totpoints; i++) {
float co[3];
copy_v3_v3(co, positions[i]);
switch (pd->ob_cache_space) {
case TEX_PD_OBJECTSPACE:
break;
case TEX_PD_OBJECTLOC:
mul_m4_v3(ob->object_to_world().ptr(), co);
sub_v3_v3(co, ob->loc);
break;
case TEX_PD_WORLDSPACE:
default:
mul_m4_v3(ob->object_to_world().ptr(), co);
break;
}
BLI_bvhtree_insert(static_cast<BVHTree *>(pd->point_tree), i, co, 1);
}
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
pointdensity_cache_vertex_color(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTWEIGHT:
pointdensity_cache_vertex_weight(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTNOR:
pointdensity_cache_vertex_normal(mesh, data_color);
break;
}
BLI_bvhtree_balance(static_cast<BVHTree *>(pd->point_tree));
}
static void cache_pointdensity(Depsgraph *depsgraph, Scene *scene, PointDensity *pd)
{
if (pd == nullptr) {
return;
}
if (pd->point_tree) {
BLI_bvhtree_free(static_cast<BVHTree *>(pd->point_tree));
pd->point_tree = nullptr;
}
if (pd->source == TEX_PD_PSYS) {
Object *ob = pd->object;
ParticleSystem *psys;
if (!ob || !pd->psys) {
return;
}
psys = static_cast<ParticleSystem *>(BLI_findlink(&ob->particlesystem, pd->psys - 1));
if (!psys) {
return;
}
pointdensity_cache_psys(depsgraph, scene, pd, ob, psys);
}
else if (pd->source == TEX_PD_OBJECT) {
Object *ob = pd->object;
if (ob && ob->type == OB_MESH) {
pointdensity_cache_object(pd, ob);
}
}
}
static void free_pointdensity(PointDensity *pd)
{
if (pd == nullptr) {
return;
}
if (pd->point_tree) {
BLI_bvhtree_free(static_cast<BVHTree *>(pd->point_tree));
pd->point_tree = nullptr;
}
MEM_SAFE_FREE(pd->point_data);
pd->totpoints = 0;
}
struct PointDensityRangeData {
float *density;
float squared_radius;
float *point_data_life;
float *point_data_velocity;
float *point_data_color;
float *vec;
float *col;
float softness;
short falloff_type;
short noise_influence;
float *age;
CurveMapping *density_curve;
float velscale;
};
static float density_falloff(PointDensityRangeData *pdr, int index, float squared_dist)
{
const float dist = (pdr->squared_radius - squared_dist) / pdr->squared_radius * 0.5f;
float density = 0.0f;
switch (pdr->falloff_type) {
case TEX_PD_FALLOFF_STD:
density = dist;
break;
case TEX_PD_FALLOFF_SMOOTH:
density = 3.0f * dist * dist - 2.0f * dist * dist * dist;
break;
case TEX_PD_FALLOFF_SOFT:
density = pow(dist, pdr->softness);
break;
case TEX_PD_FALLOFF_CONSTANT:
density = pdr->squared_radius;
break;
case TEX_PD_FALLOFF_ROOT:
density = sqrtf(dist);
break;
case TEX_PD_FALLOFF_PARTICLE_AGE:
if (pdr->point_data_life) {
density = dist * std::min(pdr->point_data_life[index], 1.0f);
}
else {
density = dist;
}
break;
case TEX_PD_FALLOFF_PARTICLE_VEL:
if (pdr->point_data_velocity) {
density = dist * len_v3(&pdr->point_data_velocity[index * 3]) * pdr->velscale;
}
else {
density = dist;
}
break;
}
if (pdr->density_curve && dist != 0.0f) {
BKE_curvemapping_init(pdr->density_curve);
density = BKE_curvemapping_evaluateF(pdr->density_curve, 0, density / dist) * dist;
}
return density;
}
static void accum_density(void *userdata, int index, const float co[3], float squared_dist)
{
PointDensityRangeData *pdr = (PointDensityRangeData *)userdata;
float density = 0.0f;
UNUSED_VARS(co);
if (pdr->point_data_velocity) {
pdr->vec[0] += pdr->point_data_velocity[index * 3 + 0]; // * density;
pdr->vec[1] += pdr->point_data_velocity[index * 3 + 1]; // * density;
pdr->vec[2] += pdr->point_data_velocity[index * 3 + 2]; // * density;
}
if (pdr->point_data_life) {
*pdr->age += pdr->point_data_life[index]; // * density;
}
if (pdr->point_data_color) {
add_v3_v3(pdr->col, &pdr->point_data_color[index * 3]); // * density;
}
density = density_falloff(pdr, index, squared_dist);
*pdr->density += density;
}
static void init_pointdensityrangedata(PointDensity *pd,
PointDensityRangeData *pdr,
float *density,
float *vec,
float *age,
float *col,
CurveMapping *density_curve,
float velscale)
{
pdr->squared_radius = pd->radius * pd->radius;
pdr->density = density;
pdr->falloff_type = pd->falloff_type;
pdr->vec = vec;
pdr->age = age;
pdr->col = col;
pdr->softness = pd->falloff_softness;
pdr->noise_influence = pd->noise_influence;
point_data_pointers(
pd, &pdr->point_data_velocity, &pdr->point_data_life, &pdr->point_data_color);
pdr->density_curve = density_curve;
pdr->velscale = velscale;
}
static int pointdensity(PointDensity *pd,
const float texvec[3],
TexResult *texres,
float r_vec[3],
float *r_age,
float r_col[3])
{
int retval = TEX_INT;
PointDensityRangeData pdr;
float density = 0.0f, age = 0.0f;
float vec[3] = {0.0f, 0.0f, 0.0f}, col[3] = {0.0f, 0.0f, 0.0f}, co[3];
float turb, noise_fac;
int num = 0;
texres->tin = 0.0f;
init_pointdensityrangedata(pd,
&pdr,
&density,
vec,
&age,
col,
(pd->flag & TEX_PD_FALLOFF_CURVE ? pd->falloff_curve : nullptr),
pd->falloff_speed_scale * 0.001f);
noise_fac = pd->noise_fac * 0.5f; /* better default */
copy_v3_v3(co, texvec);
if (point_data_used(pd)) {
/* does a BVH lookup to find accumulated density and additional point data *
* stores particle velocity vector in 'vec', and particle lifetime in 'time' */
num = BLI_bvhtree_range_query(
static_cast<const BVHTree *>(pd->point_tree), co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
/* reset */
density = 0.0f;
zero_v3(vec);
zero_v3(col);
}
if (pd->flag & TEX_PD_TURBULENCE) {
turb = BLI_noise_generic_turbulence(pd->noise_size,
texvec[0] + vec[0],
texvec[1] + vec[1],
texvec[2] + vec[2],
pd->noise_depth,
false,
pd->noise_basis);
turb -= 0.5f; /* re-center 0.0-1.0 range around 0 to prevent offsetting result */
/* now we have an offset coordinate to use for the density lookup */
co[0] = texvec[0] + noise_fac * turb;
co[1] = texvec[1] + noise_fac * turb;
co[2] = texvec[2] + noise_fac * turb;
}
/* BVH query with the potentially perturbed coordinates */
num = BLI_bvhtree_range_query(
static_cast<const BVHTree *>(pd->point_tree), co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
texres->tin = density;
if (r_age != nullptr) {
*r_age = age;
}
if (r_vec != nullptr) {
copy_v3_v3(r_vec, vec);
}
if (r_col != nullptr) {
copy_v3_v3(r_col, col);
}
return retval;
}
static void pointdensity_color(
PointDensity *pd, TexResult *texres, float age, const float vec[3], const float col[3])
{
copy_v4_fl(texres->trgba, 1.0f);
if (pd->source == TEX_PD_PSYS) {
float rgba[4];
switch (pd->color_source) {
case TEX_PD_COLOR_PARTAGE:
if (pd->coba) {
if (BKE_colorband_evaluate(pd->coba, age, rgba)) {
texres->talpha = true;
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
texres->trgba[3] = texres->tin;
}
}
break;
case TEX_PD_COLOR_PARTSPEED: {
float speed = len_v3(vec) * pd->speed_scale;
if (pd->coba) {
if (BKE_colorband_evaluate(pd->coba, speed, rgba)) {
texres->talpha = true;
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
texres->trgba[3] = texres->tin;
}
}
break;
}
case TEX_PD_COLOR_PARTVEL:
texres->talpha = true;
mul_v3_v3fl(texres->trgba, vec, pd->speed_scale);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
else {
float rgba[4];
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
texres->talpha = true;
copy_v3_v3(texres->trgba, col);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_VERTWEIGHT:
texres->talpha = true;
if (pd->coba && BKE_colorband_evaluate(pd->coba, col[0], rgba)) {
copy_v3_v3(texres->trgba, rgba);
texres->tin *= rgba[3];
}
else {
copy_v3_v3(texres->trgba, col);
}
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_VERTNOR:
texres->talpha = true;
copy_v3_v3(texres->trgba, col);
texres->trgba[3] = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
}
static void sample_dummy_point_density(int resolution, float *values)
{
memset(values, 0, sizeof(float[4]) * resolution * resolution * resolution);
}
static void particle_system_minmax(Depsgraph *depsgraph,
Scene *scene,
Object *object,
ParticleSystem *psys,
float radius,
float min[3],
float max[3])
{
const float size[3] = {radius, radius, radius};
const float cfra = BKE_scene_ctime_get(scene);
ParticleSettings *part = psys->part;
ParticleSimulationData sim = {nullptr};
ParticleData *pa = nullptr;
int i;
int total_particles;
float mat[4][4], imat[4][4];
INIT_MINMAX(min, max);
if (part->type == PART_HAIR) {
/* TODO(sergey): Not supported currently. */
return;
}
unit_m4(mat);
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = object;
sim.psys = psys;
sim.psmd = psys_get_modifier(object, psys);
invert_m4_m4(imat, object->object_to_world().ptr());
total_particles = psys->totpart + psys->totchild;
psys_sim_data_init(&sim);
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
float co_object[3], co_min[3], co_max[3];
ParticleKey state;
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, false)) {
continue;
}
mul_v3_m4v3(co_object, imat, state.co);
sub_v3_v3v3(co_min, co_object, size);
add_v3_v3v3(co_max, co_object, size);
minmax_v3v3_v3(min, max, co_min);
minmax_v3v3_v3(min, max, co_max);
}
psys_sim_data_free(&sim);
}
void RE_point_density_cache(Depsgraph *depsgraph, PointDensity *pd)
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
/* Same matrices/resolution as dupli_render_particle_set(). */
BLI_mutex_lock(&sample_mutex);
cache_pointdensity(depsgraph, scene, pd);
BLI_mutex_unlock(&sample_mutex);
}
void RE_point_density_minmax(Depsgraph *depsgraph,
PointDensity *pd,
float r_min[3],
float r_max[3])
{
using namespace blender;
Scene *scene = DEG_get_evaluated_scene(depsgraph);
Object *object = pd->object;
if (object == nullptr) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
if (pd->source == TEX_PD_PSYS) {
ParticleSystem *psys;
if (pd->psys == 0) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
psys = static_cast<ParticleSystem *>(BLI_findlink(&object->particlesystem, pd->psys - 1));
if (psys == nullptr) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
particle_system_minmax(depsgraph, scene, object, psys, pd->radius, r_min, r_max);
}
else {
const float radius[3] = {pd->radius, pd->radius, pd->radius};
if (const std::optional<Bounds<float3>> bb = BKE_object_boundbox_get(object)) {
copy_v3_v3(r_min, bb->min);
copy_v3_v3(r_max, bb->max);
/* Adjust texture space to include density points on the boundaries. */
sub_v3_v3(r_min, radius);
add_v3_v3(r_max, radius);
}
else {
zero_v3(r_min);
zero_v3(r_max);
}
}
}
struct SampleCallbackData {
PointDensity *pd;
int resolution;
float *min, *dim;
float *values;
};
static void point_density_sample_func(void *__restrict data_v,
const int iter,
const TaskParallelTLS *__restrict /*tls*/)
{
SampleCallbackData *data = (SampleCallbackData *)data_v;
const int resolution = data->resolution;
const int resolution2 = resolution * resolution;
const float *min = data->min, *dim = data->dim;
PointDensity *pd = data->pd;
float *values = data->values;
if (!pd || !pd->point_tree) {
return;
}
size_t z = size_t(iter);
for (size_t y = 0; y < resolution; y++) {
for (size_t x = 0; x < resolution; x++) {
size_t index = z * resolution2 + y * resolution + x;
float texvec[3];
float age, vec[3], col[3];
TexResult texres;
copy_v3_v3(texvec, min);
texvec[0] += dim[0] * float(x) / float(resolution);
texvec[1] += dim[1] * float(y) / float(resolution);
texvec[2] += dim[2] * float(z) / float(resolution);
pointdensity(pd, texvec, &texres, vec, &age, col);
pointdensity_color(pd, &texres, age, vec, col);
copy_v3_v3(&values[index * 4 + 0], texres.trgba);
values[index * 4 + 3] = texres.tin;
}
}
}
void RE_point_density_sample(Depsgraph *depsgraph,
PointDensity *pd,
const int resolution,
float *values)
{
Object *object = pd->object;
float min[3], max[3], dim[3];
/* TODO(sergey): Implement some sort of assert() that point density
* was cached already.
*/
if (object == nullptr) {
sample_dummy_point_density(resolution, values);
return;
}
BLI_mutex_lock(&sample_mutex);
RE_point_density_minmax(depsgraph, pd, min, max);
BLI_mutex_unlock(&sample_mutex);
sub_v3_v3v3(dim, max, min);
if (dim[0] <= 0.0f || dim[1] <= 0.0f || dim[2] <= 0.0f) {
sample_dummy_point_density(resolution, values);
return;
}
SampleCallbackData data;
data.pd = pd;
data.resolution = resolution;
data.min = min;
data.dim = dim;
data.values = values;
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (resolution > 32);
BLI_task_parallel_range(0, resolution, &data, point_density_sample_func, &settings);
free_pointdensity(pd);
}
void RE_point_density_free(PointDensity *pd)
{
free_pointdensity(pd);
}
void RE_point_density_fix_linking() {}