Files
test/source/blender/blenkernel/intern/effect.c
Ton Roosendaal 610cec55c7 Biiig commit! Thanks to 2-3 weeks of cvs freeze...
Render:
- New; support for dual CPU render (SDL thread)
  Currently only works with alternating scanlines, but gives excellent
  performance. For both normal render as unified implemented.
  Note the "mutex" locks on z-transp buffer render and imbuf loads.
- This has been made possible by major cleanups in render code, especially
  getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct
  OSA or using Materials or Texture data to write to.
- Made normal render fully 4x32 floats too, and removed all old optimizes
  with chars or shorts.
- Made normal render and unified render use same code for sky and halo
  render, giving equal (and better) results for halo render. Old render
  now also uses PostProcess options (brightness, mul, gamma)
- Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer
  after render. Using PostProcess menu you will note an immediate re-
  display of image too (32 bits RGBA)
- Added "Hue" and "Saturation" sliders to PostProcess options

- Render module is still not having a "nice" API, but amount of dependencies
  went down a lot. Next todo: remove abusive "previewrender" code.
  The last main global in Render (struct Render) now can be re-used for fully
  controlling a render, to allow multiple "instances" of render to open.

- Renderwindow now displays a smal bar on top with the stats, and keeps the
  stats after render too. Including "spare" page support.
  Not only easier visible that way, but also to remove the awkward code that
  was drawing stats in the Info header (extreme slow on some ATIs too)

- Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping
  defines.

- I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00

1474 lines
36 KiB
C

/* effect.c
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#ifdef WIN32
#include "BLI_winstuff.h"
#endif
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_effect_types.h"
#include "DNA_object_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "DNA_lattice_types.h"
#include "DNA_ipo_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_rand.h"
#include "BKE_action.h"
#include "BKE_bad_level_calls.h"
#include "BKE_blender.h"
#include "BKE_constraint.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_ipo.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_screen.h"
#include "BKE_utildefines.h"
#include "render.h" // externtex, bad level call (ton)
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
Effect *add_effect(int type)
{
Effect *eff=0;
BuildEff *bld;
PartEff *paf;
WaveEff *wav;
int a;
switch(type) {
case EFF_BUILD:
bld= MEM_callocN(sizeof(BuildEff), "neweff");
eff= (Effect *)bld;
bld->sfra= 1.0;
bld->len= 100.0;
break;
case EFF_PARTICLE:
paf= MEM_callocN(sizeof(PartEff), "neweff");
eff= (Effect *)paf;
paf->sta= 1.0;
paf->end= 100.0;
paf->lifetime= 50.0;
for(a=0; a<PAF_MAXMULT; a++) {
paf->life[a]= 50.0;
paf->child[a]= 4;
paf->mat[a]= 1;
}
paf->totpart= 1000;
paf->totkey= 8;
paf->staticstep= 5;
paf->defvec[2]= 1.0f;
paf->nabla= 0.05f;
break;
case EFF_WAVE:
wav= MEM_callocN(sizeof(WaveEff), "neweff");
eff= (Effect *)wav;
wav->flag |= (WAV_X+WAV_Y+WAV_CYCL);
wav->height= 0.5f;
wav->width= 1.5f;
wav->speed= 0.5f;
wav->narrow= 1.5f;
wav->lifetime= 0.0f;
wav->damp= 10.0f;
break;
}
eff->type= eff->buttype= type;
eff->flag |= SELECT;
return eff;
}
void free_effect(Effect *eff)
{
PartEff *paf;
if(eff->type==EFF_PARTICLE) {
paf= (PartEff *)eff;
if(paf->keys) MEM_freeN(paf->keys);
}
MEM_freeN(eff);
}
void free_effects(ListBase *lb)
{
Effect *eff;
eff= lb->first;
while(eff) {
BLI_remlink(lb, eff);
free_effect(eff);
eff= lb->first;
}
}
Effect *copy_effect(Effect *eff)
{
Effect *effn;
effn= MEM_dupallocN(eff);
if(effn->type==EFF_PARTICLE) ((PartEff *)effn)->keys= 0;
return effn;
}
void copy_act_effect(Object *ob)
{
/* return a copy of the active effect */
Effect *effn, *eff;
eff= ob->effect.first;
while(eff) {
if(eff->flag & SELECT) {
effn= copy_effect(eff);
BLI_addtail(&ob->effect, effn);
eff->flag &= ~SELECT;
return;
}
eff= eff->next;
}
/* when it comes here: add new effect */
eff= add_effect(EFF_BUILD);
BLI_addtail(&ob->effect, eff);
}
void copy_effects(ListBase *lbn, ListBase *lb)
{
Effect *eff, *effn;
lbn->first= lbn->last= 0;
eff= lb->first;
while(eff) {
effn= copy_effect(eff);
BLI_addtail(lbn, effn);
eff= eff->next;
}
}
void deselectall_eff(Object *ob)
{
Effect *eff= ob->effect.first;
while(eff) {
eff->flag &= ~SELECT;
eff= eff->next;
}
}
void set_buildvars(Object *ob, int *start, int *end)
{
BuildEff *bld;
float ctime;
bld= ob->effect.first;
while(bld) {
if(bld->type==EFF_BUILD) {
ctime= bsystem_time(ob, 0, (float)G.scene->r.cfra, bld->sfra-1.0f);
if(ctime < 0.0) {
*end= *start;
}
else if(ctime < bld->len) {
*end= *start+ (int)((*end - *start)*ctime/bld->len);
}
return;
}
bld= bld->next;
}
}
/* ***************** PARTICLES ***************** */
Particle *new_particle(PartEff *paf)
{
static Particle *pa;
static int cur;
/* we agree: when paf->keys==0: alloc */
if(paf->keys==0) {
pa= paf->keys= MEM_callocN( paf->totkey*paf->totpart*sizeof(Particle), "particlekeys" );
cur= 0;
}
else {
if(cur && cur<paf->totpart) pa+=paf->totkey;
cur++;
}
return pa;
}
PartEff *give_parteff(Object *ob)
{
PartEff *paf;
paf= ob->effect.first;
while(paf) {
if(paf->type==EFF_PARTICLE) return paf;
paf= paf->next;
}
return 0;
}
void where_is_particle(PartEff *paf, Particle *pa, float ctime, float *vec)
{
Particle *p[4];
float dt, t[4];
int a;
if(paf->totkey==1) {
VECCOPY(vec, pa->co);
return;
}
/* first find the first particlekey */
a= (int)((paf->totkey-1)*(ctime-pa->time)/pa->lifetime);
if(a>=paf->totkey) a= paf->totkey-1;
else if(a<0) a= 0;
pa+= a;
if(a>0) p[0]= pa-1; else p[0]= pa;
p[1]= pa;
if(a+1<paf->totkey) p[2]= pa+1; else p[2]= pa;
if(a+2<paf->totkey) p[3]= pa+2; else p[3]= p[2];
if(p[1]==p[2]) dt= 0.0;
else dt= (ctime-p[1]->time)/(p[2]->time - p[1]->time);
if(paf->flag & PAF_BSPLINE) set_four_ipo(dt, t, KEY_BSPLINE);
else set_four_ipo(dt, t, KEY_CARDINAL);
vec[0]= t[0]*p[0]->co[0] + t[1]*p[1]->co[0] + t[2]*p[2]->co[0] + t[3]*p[3]->co[0];
vec[1]= t[0]*p[0]->co[1] + t[1]*p[1]->co[1] + t[2]*p[2]->co[1] + t[3]*p[3]->co[1];
vec[2]= t[0]*p[0]->co[2] + t[1]*p[1]->co[2] + t[2]*p[2]->co[2] + t[3]*p[3]->co[2];
}
void particle_tex(MTex *mtex, PartEff *paf, float *co, float *no)
{
float tin, tr, tg, tb, ta;
float old;
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
if(paf->texmap==PAF_TEXINT) {
tin*= paf->texfac;
no[0]+= tin*paf->defvec[0];
no[1]+= tin*paf->defvec[1];
no[2]+= tin*paf->defvec[2];
}
else if(paf->texmap==PAF_TEXRGB) {
no[0]+= (tr-0.5f)*paf->texfac;
no[1]+= (tg-0.5f)*paf->texfac;
no[2]+= (tb-0.5f)*paf->texfac;
}
else { /* PAF_TEXGRAD */
old= tin;
co[0]+= paf->nabla;
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
no[0]+= (old-tin)*paf->texfac;
co[0]-= paf->nabla;
co[1]+= paf->nabla;
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
no[1]+= (old-tin)*paf->texfac;
co[1]-= paf->nabla;
co[2]+= paf->nabla;
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
no[2]+= (old-tin)*paf->texfac;
}
}
static int linetriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *labda)
{
float p[3], s[3], d[3], e1[3], e2[3], q[3];
float a, f, u, v;
VECSUB(e1, v1, v0);
VECSUB(e2, v2, v0);
VECSUB(d, p2, p1);
Crossf(p, d, e2);
a = INPR(e1, p);
if ((a > -0.000001) && (a < 0.000001)) return 0;
f = 1.0f/a;
VECSUB(s, p1, v0);
Crossf(q, s, e1);
*labda = f * INPR(e2, q);
if ((*labda < 0.0)||(*labda > 1.0)) return 0;
u = f * INPR(s, p);
if ((u < 0.0)||(u > 1.0)) return 0;
v = f * INPR(d, q);
if ((v < 0.0)||((u + v) > 1.0)) return 0;
return 1;
}
static void get_effector(float opco[], float force[], float speed[], float cur_time, unsigned int par_layer)
{
/*
Particle effector field code
Modifies the force on a particle according to its
relation with the effector object
Different kind of effectors include:
Forcefields: Gravity-like attractor
(force power is related to the inverse of distance to the power of a falloff value)
Vortex fields: swirling effectors
(particles rotate around Z-axis of the object. otherwise, same relation as)
(Forcefields, but this is not done through a force/acceleration)
*/
Object *ob;
Base *base;
float vect_to_vert[3];
float force_vec[3];
float f_force, distance;
float obloc[3];
float force_val, ffall_val;
short cur_frame;
/* Cycle through objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? */
base = G.scene->base.first;
while (base) {
if(base->lay & par_layer) {
ob= base->object;
if(ob->pd && ob->pd->forcefield == PFIELD_FORCE) {
/* Need to set r.cfra for paths (investigate, ton) */
cur_frame = G.scene->r.cfra;
G.scene->r.cfra = (short)cur_time;
where_is_object_time(ob, cur_time);
G.scene->r.cfra = cur_frame;
/* only use center of object */
obloc[0] = ob->obmat[3][0];
obloc[1] = ob->obmat[3][1];
obloc[2] = ob->obmat[3][2];
/* Get IPO force strength and fall off values here */
if (has_ipo_code(ob->ipo, OB_PD_FSTR))
force_val = IPO_GetFloatValue(ob->ipo, OB_PD_FSTR, cur_time);
else
force_val = ob->pd->f_strength;
if (has_ipo_code(ob->ipo, OB_PD_FFALL))
ffall_val = IPO_GetFloatValue(ob->ipo, OB_PD_FFALL, cur_time);
else
ffall_val = ob->pd->f_power;
/* Now calculate the gravitational force */
VECSUB(vect_to_vert, obloc, opco);
distance = Normalise(vect_to_vert);
/* Limit minimum distance to vertex so that */
/* the force is not too big */
if (distance < 0.001) distance = 0.001f;
f_force = (force_val)*(1/(1000 * (float)pow((double)distance, (double)ffall_val)));
force[0] += (vect_to_vert[0] * f_force );
force[1] += (vect_to_vert[1] * f_force );
force[2] += (vect_to_vert[2] * f_force );
}
else if(ob->pd && ob->pd->forcefield == PFIELD_VORTEX) {
/* Need to set r.cfra for paths (investigate, ton) */
cur_frame = G.scene->r.cfra;
G.scene->r.cfra = (short)cur_time;
where_is_object_time(ob, cur_time);
G.scene->r.cfra = cur_frame;
/* only use center of object */
obloc[0] = ob->obmat[3][0];
obloc[1] = ob->obmat[3][1];
obloc[2] = ob->obmat[3][2];
/* Get IPO force strength and fall off values here */
if (has_ipo_code(ob->ipo, OB_PD_FSTR))
force_val = IPO_GetFloatValue(ob->ipo, OB_PD_FSTR, cur_time);
else
force_val = ob->pd->f_strength;
if (has_ipo_code(ob->ipo, OB_PD_FFALL))
ffall_val = IPO_GetFloatValue(ob->ipo, OB_PD_FFALL, cur_time);
else
ffall_val = ob->pd->f_power;
/* Now calculate the vortex force */
VECSUB(vect_to_vert, obloc, opco);
distance = Normalise(vect_to_vert);
Crossf(force_vec, ob->obmat[2], vect_to_vert);
Normalise(force_vec);
/* Limit minimum distance to vertex so that */
/* the force is not too big */
if (distance < 0.001) distance = 0.001f;
f_force = (force_val)*(1/(100 * (float)pow((double)distance, (double)ffall_val)));
speed[0] -= (force_vec[0] * f_force );
speed[1] -= (force_vec[1] * f_force );
speed[2] -= (force_vec[2] * f_force );
}
}
base = base->next;
}
}
static void cache_object_vertices(Object *ob)
{
Mesh *me;
MVert *mvert;
float *fp;
int a;
me= ob->data;
if(me->totvert==0) return;
fp= ob->sumohandle= MEM_mallocN(3*sizeof(float)*me->totvert, "cache particles");
mvert= me->mvert;
a= me->totvert;
while(a--) {
VECCOPY(fp, mvert->co);
Mat4MulVecfl(ob->obmat, fp);
mvert++;
fp+= 3;
}
}
static int get_deflection(float opco[3], float npco[3], float opno[3],
float npno[3], float life, float force[3], int def_depth,
float cur_time, unsigned int par_layer, int *last_object,
int *last_face, int *same_face)
{
/* Particle deflection code */
/* The code is in two sections: the first part checks whether a particle has */
/* intersected a face of a deflector mesh, given its old and new co-ords, opco and npco */
/* and which face it hit first */
/* The second part calculates the new co-ordinates given that collision and updates */
/* the new co-ordinates accordingly */
Base *base;
Object *ob, *deflection_object = NULL;
Mesh *def_mesh;
MFace *mface, *deflection_face = NULL;
float *v1, *v2, *v3, *v4, *vcache=NULL;
float nv1[3], nv2[3], nv3[3], nv4[3], edge1[3], edge2[3];
float dv1[3], dv2[3], dv3[3];
float vect_to_int[3], refl_vel[3];
float d_intersect_co[3], d_intersect_vect[3], d_nvect[3], d_i_co_above[3];
float forcec[3];
float k_point3, dist_to_plane;
float first_dist, ref_plane_mag;
float dk_plane=0, dk_point1=0;
float icalctop, icalcbot, n_mag;
float mag_iv, x_m,y_m,z_m;
float damping, perm_thresh;
float perm_val, rdamp_val;
int a, deflected=0, deflected_now=0;
float t, min_t;
float mat[3][3], obloc[3];
short cur_frame;
float time_before, time_after;
float force_mag_norm;
int d_object=0, d_face=0, ds_object=0, ds_face=0;
first_dist = 200000;
min_t = 200000;
/* The first part of the code, finding the first intersected face*/
base= G.scene->base.first;
while (base) {
/*Only proceed for mesh object in same layer */
if(base->object->type==OB_MESH && (base->lay & par_layer)) {
ob= base->object;
/* only with deflecting set */
if(ob->pd && ob->pd->deflect) {
def_mesh= ob->data;
d_object = d_object + 1;
d_face = d_face + 1;
mface= def_mesh->mface;
a = def_mesh->totface;
if(ob->parent==NULL && ob->ipo==NULL) { // static
if(ob->sumohandle==NULL) cache_object_vertices(ob);
vcache= ob->sumohandle;
}
else {
/*Find out where the object is at this time*/
cur_frame = G.scene->r.cfra;
G.scene->r.cfra = (short)cur_time;
where_is_object_time(ob, cur_time);
G.scene->r.cfra = cur_frame;
/*Pass the values from ob->obmat to mat*/
/*and the location values to obloc */
Mat3CpyMat4(mat,ob->obmat);
obloc[0] = ob->obmat[3][0];
obloc[1] = ob->obmat[3][1];
obloc[2] = ob->obmat[3][2];
}
while (a--) {
if(vcache) {
v1= vcache+ 3*(mface->v1);
VECCOPY(nv1, v1);
v1= vcache+ 3*(mface->v2);
VECCOPY(nv2, v1);
v1= vcache+ 3*(mface->v3);
VECCOPY(nv3, v1);
v1= vcache+ 3*(mface->v4);
VECCOPY(nv4, v1);
}
else {
/* Calculate the global co-ordinates of the vertices*/
v1= (def_mesh->mvert+(mface->v1))->co;
v2= (def_mesh->mvert+(mface->v2))->co;
v3= (def_mesh->mvert+(mface->v3))->co;
v4= (def_mesh->mvert+(mface->v4))->co;
VECCOPY(nv1, v1);
VECCOPY(nv2, v2);
VECCOPY(nv3, v3);
VECCOPY(nv4, v4);
/*Apply the objects deformation matrix*/
Mat3MulVecfl(mat, nv1);
Mat3MulVecfl(mat, nv2);
Mat3MulVecfl(mat, nv3);
Mat3MulVecfl(mat, nv4);
VECADD(nv1, nv1, obloc);
VECADD(nv2, nv2, obloc);
VECADD(nv3, nv3, obloc);
VECADD(nv4, nv4, obloc);
}
deflected_now = 0;
t= 0.5; // this is labda of line, can use it optimize quad intersection
if( linetriangle(opco, npco, nv1, nv2, nv3, &t) ) {
if (t < min_t) {
deflected = 1;
deflected_now = 1;
}
}
else if (mface->v4 && (t>=0.0 && t<=1.0)) {
if( linetriangle(opco, npco, nv1, nv3, nv4, &t) ) {
if (t < min_t) {
deflected = 1;
deflected_now = 2;
}
}
}
if ((deflected_now > 0) && (t < min_t)) {
min_t = t;
ds_object = d_object;
ds_face = d_face;
deflection_object = ob;
deflection_face = mface;
if (deflected_now==1) {
VECCOPY(dv1, nv1);
VECCOPY(dv2, nv2);
VECCOPY(dv3, nv3);
}
else {
VECCOPY(dv1, nv1);
VECCOPY(dv2, nv3);
VECCOPY(dv3, nv4);
}
}
mface++;
}
}
}
base = base->next;
}
/* Here's the point to do the permeability calculation */
/* Set deflected to 0 if a random number is below the value */
/* Get the permeability IPO here*/
if (deflected) {
if (has_ipo_code(deflection_object->ipo, OB_PD_PERM))
perm_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_PERM, cur_time);
else
perm_val = deflection_object->pd->pdef_perm;
perm_thresh = (float)BLI_drand() - perm_val;
if (perm_thresh < 0 ) {
deflected = 0;
}
}
/* Now for the second part of the deflection code - work out the new speed */
/* and position of the particle if a collision occurred */
if (deflected) {
VECSUB(edge1, dv1, dv2);
VECSUB(edge2, dv3, dv2);
Crossf(d_nvect, edge2, edge1);
n_mag = Normalise(d_nvect);
dk_plane = INPR(d_nvect, nv1);
dk_point1 = INPR(d_nvect,opco);
VECSUB(d_intersect_vect, npco, opco);
d_intersect_co[0] = opco[0] + (min_t * (npco[0] - opco[0]));
d_intersect_co[1] = opco[1] + (min_t * (npco[1] - opco[1]));
d_intersect_co[2] = opco[2] + (min_t * (npco[2] - opco[2]));
d_i_co_above[0] = (d_intersect_co[0] + (0.001f * d_nvect[0]));
d_i_co_above[1] = (d_intersect_co[1] + (0.001f * d_nvect[1]));
d_i_co_above[2] = (d_intersect_co[2] + (0.001f * d_nvect[2]));
mag_iv = Normalise(d_intersect_vect);
VECCOPY(npco, d_intersect_co);
VECSUB(vect_to_int, opco, d_intersect_co);
first_dist = Normalise(vect_to_int);
/* Work out the lengths of time before and after collision*/
time_before = (life*(first_dist / (mag_iv)));
time_after = (life*((mag_iv - first_dist) / (mag_iv)));
/* We have to recalculate what the speed would have been at the */
/* point of collision, not the key frame time */
npno[0]= opno[0] + time_before*force[0];
npno[1]= opno[1] + time_before*force[1];
npno[2]= opno[2] + time_before*force[2];
/* Reflect the speed vector in the face */
x_m = (2 * npno[0] * d_nvect[0]);
y_m = (2 * npno[1] * d_nvect[1]);
z_m = (2 * npno[2] * d_nvect[2]);
refl_vel[0] = npno[0] - (d_nvect[0] * (x_m + y_m + z_m));
refl_vel[1] = npno[1] - (d_nvect[1] * (x_m + y_m + z_m));
refl_vel[2] = npno[2] - (d_nvect[2] * (x_m + y_m + z_m));
/*A random variation in the damping factor........ */
/*Get the IPO values for damping here*/
if (has_ipo_code(deflection_object->ipo, OB_PD_SDAMP))
damping = IPO_GetFloatValue(deflection_object->ipo, OB_PD_SDAMP, cur_time);
else
damping = deflection_object->pd->pdef_damp;
if (has_ipo_code(deflection_object->ipo, OB_PD_RDAMP))
rdamp_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_RDAMP, cur_time);
else
rdamp_val = deflection_object->pd->pdef_rdamp;
damping = damping + ((1 - damping) * ((float)BLI_drand()*rdamp_val));
damping = damping * damping;
ref_plane_mag = INPR(refl_vel,d_nvect);
if (damping > 0.999) damping = 0.999f;
/* Now add in the damping force - only damp in the direction of */
/* the faces normal vector */
npno[0] = (refl_vel[0] - (d_nvect[0] * ref_plane_mag * damping));
npno[1] = (refl_vel[1] - (d_nvect[1] * ref_plane_mag * damping));
npno[2] = (refl_vel[2] - (d_nvect[2] * ref_plane_mag * damping));
/* Now reset opno */
VECCOPY(opno,npno);
VECCOPY(forcec, force);
/* If the particle has bounced more than four times on the same */
/* face within this cycle (depth > 4, same face > 4 ) */
/* Then set the force to be only that component of the force */
/* in the same direction as the face normal */
/* i.e. subtract the component of the force in the direction */
/* of the face normal from the actual force */
if ((ds_object == *last_object) && (ds_face == *last_face)) {
/* Increment same_face */
*same_face = *same_face + 1;
if ((*same_face > 3) && (def_depth > 3)) {
force_mag_norm = INPR(forcec, d_nvect);
forcec[0] = forcec[0] - (d_nvect[0] * force_mag_norm);
forcec[1] = forcec[1] - (d_nvect[1] * force_mag_norm);
forcec[2] = forcec[2] - (d_nvect[2] * force_mag_norm);
}
}
else *same_face = 1;
*last_object = ds_object;
*last_face = ds_face;
/* We have the particles speed at the point of collision */
/* Now we want the particles speed at the current key frame */
npno[0]= npno[0] + time_after*forcec[0];
npno[1]= npno[1] + time_after*forcec[1];
npno[2]= npno[2] + time_after*forcec[2];
/* Now we have to recalculate pa->co for the remainder*/
/* of the time since the intersect*/
npco[0]= npco[0] + time_after*npno[0];
npco[1]= npco[1] + time_after*npno[1];
npco[2]= npco[2] + time_after*npno[2];
/* And set the old co-ordinates back to the point just above the intersection */
VECCOPY(opco, d_i_co_above);
/* Finally update the time */
life = time_after;
cur_time += time_before;
/* The particle may have fallen through the face again by now!!*/
/* So check if the particle has changed sides of the plane compared*/
/* the co-ordinates at the last keyframe*/
/* But only do this as a last resort, if we've got to the end of the */
/* number of collisions allowed */
if (def_depth==9) {
k_point3 = INPR(d_nvect,npco);
if (((dk_plane > k_point3) && (dk_plane < dk_point1))||((dk_plane < k_point3) && (dk_plane > dk_point1))) {
/* Yup, the pesky particle may have fallen through a hole!!! */
/* So we'll cheat a bit and move the particle along the normal vector */
/* until it's just the other side of the plane */
icalctop = (dk_plane - d_nvect[0]*npco[0] - d_nvect[1]*npco[1] - d_nvect[2]*npco[2]);
icalcbot = (d_nvect[0]*d_nvect[0] + d_nvect[1]*d_nvect[1] + d_nvect[2]*d_nvect[2]);
dist_to_plane = icalctop / icalcbot;
/* Now just increase the distance a little to place */
/* the point the other side of the plane */
dist_to_plane *= 1.1f;
npco[0]= npco[0] + (dist_to_plane * d_nvect[0]);
npco[1]= npco[1] + (dist_to_plane * d_nvect[1]);
npco[2]= npco[2] + (dist_to_plane * d_nvect[2]);
}
}
}
return deflected;
}
void make_particle_keys(int depth, int nr, PartEff *paf, Particle *part, float *force, int deform, MTex *mtex, unsigned int par_layer)
{
Particle *pa, *opa = NULL;
float damp, deltalife, life;
float cur_time;
float opco[3], opno[3], npco[3], npno[3], new_force[3], new_speed[3];
int b, rt1, rt2, deflected, deflection, finish_defs, def_count;
int last_ob, last_fc, same_fc;
damp= 1.0f-paf->damp;
pa= part;
/* start speed: random */
if(paf->randfac!=0.0) {
pa->no[0]+= (float)(paf->randfac*( BLI_drand() -0.5));
pa->no[1]+= (float)(paf->randfac*( BLI_drand() -0.5));
pa->no[2]+= (float)(paf->randfac*( BLI_drand() -0.5));
}
/* start speed: texture */
if(mtex && paf->texfac!=0.0) {
particle_tex(mtex, paf, pa->co, pa->no);
}
if(paf->totkey>1) deltalife= pa->lifetime/(paf->totkey-1);
else deltalife= pa->lifetime;
opa= pa;
pa++;
b= paf->totkey-1;
while(b--) {
/* new time */
pa->time= opa->time+deltalife;
/* set initial variables */
opco[0] = opa->co[0];
opco[1] = opa->co[1];
opco[2] = opa->co[2];
new_force[0] = force[0];
new_force[1] = force[1];
new_force[2] = force[2];
new_speed[0] = 0.0;
new_speed[1] = 0.0;
new_speed[2] = 0.0;
/* Check force field */
cur_time = pa->time;
get_effector(opco, new_force, new_speed, cur_time, par_layer);
/* new location */
pa->co[0]= opa->co[0] + deltalife * (opa->no[0] + new_speed[0] + 0.5f*new_force[0]);
pa->co[1]= opa->co[1] + deltalife * (opa->no[1] + new_speed[1] + 0.5f*new_force[1]);
pa->co[2]= opa->co[2] + deltalife * (opa->no[2] + new_speed[2] + 0.5f*new_force[2]);
/* new speed */
pa->no[0]= opa->no[0] + deltalife*new_force[0];
pa->no[1]= opa->no[1] + deltalife*new_force[1];
pa->no[2]= opa->no[2] + deltalife*new_force[2];
/* Particle deflection code */
deflection = 0;
finish_defs = 1;
def_count = 0;
VECCOPY(opno, opa->no);
VECCOPY(npco, pa->co);
VECCOPY(npno, pa->no);
life = deltalife;
cur_time -= deltalife;
last_ob = -1;
last_fc = -1;
same_fc = 0;
/* First call the particle deflection check for the particle moving */
/* between the old co-ordinates and the new co-ordinates */
/* If a deflection occurs, call the code again, this time between the */
/* intersection point and the updated new co-ordinates */
/* Bail out if we've done the calculation 10 times - this seems ok */
/* for most scenes I've tested */
while (finish_defs) {
deflected = get_deflection(opco, npco, opno, npno, life, new_force,
def_count, cur_time, par_layer,
&last_ob, &last_fc, &same_fc);
if (deflected) {
def_count = def_count + 1;
deflection = 1;
if (def_count==10) finish_defs = 0;
}
else {
finish_defs = 0;
}
}
/* Only update the particle positions and speed if we had a deflection */
if (deflection) {
pa->co[0] = npco[0];
pa->co[1] = npco[1];
pa->co[2] = npco[2];
pa->no[0] = npno[0];
pa->no[1] = npno[1];
pa->no[2] = npno[2];
}
/* speed: texture */
if(mtex && paf->texfac!=0.0) {
particle_tex(mtex, paf, pa->co, pa->no);
}
if(damp!=1.0) {
pa->no[0]*= damp;
pa->no[1]*= damp;
pa->no[2]*= damp;
}
opa= pa;
pa++;
/* opa is used later on too! */
}
if(deform) {
/* deform all keys */
pa= part;
b= paf->totkey;
while(b--) {
calc_latt_deform(pa->co);
pa++;
}
}
/* the big multiplication */
if(depth<PAF_MAXMULT && paf->mult[depth]!=0.0) {
/* new 'child' emerges from an average 'mult' part from
the particles */
damp = (float)nr;
rt1= (int)(damp*paf->mult[depth]);
rt2= (int)((damp+1.0)*paf->mult[depth]);
if(rt1!=rt2) {
for(b=0; b<paf->child[depth]; b++) {
pa= new_particle(paf);
*pa= *opa;
pa->lifetime= paf->life[depth];
if(paf->randlife!=0.0) {
pa->lifetime*= 1.0f+ (float)(paf->randlife*( BLI_drand() - 0.5));
}
pa->mat_nr= paf->mat[depth];
make_particle_keys(depth+1, b, paf, pa, force, deform, mtex, par_layer);
}
}
}
}
void init_mv_jit(float *jit, int num,int seed2)
{
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if(num==0) return;
rad1= (float)(1.0/sqrt((float)num));
rad2= (float)(1.0/((float)num));
rad3= (float)sqrt((float)num)/((float)num);
BLI_srand(31415926 + num + seed2);
x= 0;
num2 = 2 * num;
for(i=0; i<num2; i+=2) {
jit[i]= x+ (float)(rad1*(0.5-BLI_drand()));
jit[i+1]= ((float)i/2)/num +(float)(rad1*(0.5-BLI_drand()));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
RE_jitterate1(jit, jit2, num, rad1);
RE_jitterate1(jit, jit2, num, rad1);
RE_jitterate2(jit, jit2, num, rad2);
}
MEM_freeN(jit2);
}
void give_mesh_mvert(Mesh *me, int nr, float *co, short *no, int seed2)
{
static float *jit=0;
static int jitlevel=1;
MVert *mvert, *mvertbase=NULL;
MFace *mface, *mfacebase=NULL;
float u, v, *v1, *v2, *v3, *v4;
int totface=0, totvert=0, curface, curjit;
short *n1, *n2, *n3, *n4;
/* signal */
if(me==0) {
if(jit) MEM_freeN(jit);
jit= 0;
return;
}
/* get it from displist? */
if(me->disp.first) {
DispList *dl= me->disp.first;
if(dl->type==DL_MESH) {
DispListMesh *dlm= dl->mesh;
mvertbase= dlm->mvert;
mfacebase= dlm->mface;
totface= dlm->totface;
totvert= dlm->totvert;
}
}
if(totvert==0) {
mvertbase= me->mvert;
mfacebase= me->mface;
totface= me->totface;
totvert= me->totvert;
}
if(totface==0 || nr<totvert) {
mvert= mvertbase + (nr % totvert);
VECCOPY(co, mvert->co);
VECCOPY(no, mvert->no);
}
else {
nr-= totvert;
if(jit==0) {
jitlevel= nr/totface;
if(jitlevel==0) jitlevel= 1;
if(jitlevel>100) jitlevel= 100;
jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
init_mv_jit(jit, jitlevel,seed2);
}
curjit= nr/totface;
curjit= curjit % jitlevel;
curface= nr % totface;
mface= mfacebase;
mface+= curface;
v1= (mvertbase+(mface->v1))->co;
v2= (mvertbase+(mface->v2))->co;
n1= (mvertbase+(mface->v1))->no;
n2= (mvertbase+(mface->v2))->no;
if(mface->v3==0) {
v3= (mvertbase+(mface->v2))->co;
v4= (mvertbase+(mface->v1))->co;
n3= (mvertbase+(mface->v2))->no;
n4= (mvertbase+(mface->v1))->no;
}
else if(mface->v4==0) {
v3= (mvertbase+(mface->v3))->co;
v4= (mvertbase+(mface->v1))->co;
n3= (mvertbase+(mface->v3))->no;
n4= (mvertbase+(mface->v1))->no;
}
else {
v3= (mvertbase+(mface->v3))->co;
v4= (mvertbase+(mface->v4))->co;
n3= (mvertbase+(mface->v3))->no;
n4= (mvertbase+(mface->v4))->no;
}
u= jit[2*curjit];
v= jit[2*curjit+1];
co[0]= (float)((1.0-u)*(1.0-v)*v1[0] + (1.0-u)*(v)*v2[0] + (u)*(v)*v3[0] + (u)*(1.0-v)*v4[0]);
co[1]= (float)((1.0-u)*(1.0-v)*v1[1] + (1.0-u)*(v)*v2[1] + (u)*(v)*v3[1] + (u)*(1.0-v)*v4[1]);
co[2]= (float)((1.0-u)*(1.0-v)*v1[2] + (1.0-u)*(v)*v2[2] + (u)*(v)*v3[2] + (u)*(1.0-v)*v4[2]);
no[0]= (short)((1.0-u)*(1.0-v)*n1[0] + (1.0-u)*(v)*n2[0] + (u)*(v)*n3[0] + (u)*(1.0-v)*n4[0]);
no[1]= (short)((1.0-u)*(1.0-v)*n1[1] + (1.0-u)*(v)*n2[1] + (u)*(v)*n3[1] + (u)*(1.0-v)*n4[1]);
no[2]= (short)((1.0-u)*(1.0-v)*n1[2] + (1.0-u)*(v)*n2[2] + (u)*(v)*n3[2] + (u)*(1.0-v)*n4[2]);
}
}
void build_particle_system(Object *ob)
{
Base *base;
Object *par;
PartEff *paf;
Particle *pa;
Mesh *me;
MVert *mvert;
MTex *mtexmove=0;
Material *ma;
float framelenont, ftime, dtime, force[3], imat[3][3], vec[3];
float fac, prevobmat[4][4], sfraont, co[3];
int deform=0, a, cur, cfraont, cfralast, totpart;
short no[3];
if(ob->type!=OB_MESH) return;
me= ob->data;
if(me->totvert==0) return;
ma= give_current_material(ob, 1);
if(ma) {
mtexmove= ma->mtex[7];
}
paf= give_parteff(ob);
if(paf==NULL) return;
waitcursor(1);
disable_speed_curve(1);
/* warning! we cannot call this when modifier is active! */
mesh_modifier(ob, 's');
/* generate all particles */
if(paf->keys) MEM_freeN(paf->keys);
paf->keys= NULL;
new_particle(paf);
/* reset deflector cache, sumohandle is free, but its still sorta abuse... (ton) */
for(base= G.scene->base.first; base; base= base->next) {
base->object->sumohandle= NULL;
}
cfraont= G.scene->r.cfra;
cfralast= -1000;
framelenont= G.scene->r.framelen;
G.scene->r.framelen= 1.0;
sfraont= ob->sf;
ob->sf= 0.0;
/* mult generations? */
totpart= paf->totpart;
for(a=0; a<PAF_MAXMULT; a++) {
if(paf->mult[a]!=0.0) {
/* interessant formula! this way after 'x' generations the total is paf->totpart */
totpart= (int)(totpart / (1.0+paf->mult[a]*paf->child[a]));
}
else break;
}
ftime= paf->sta;
dtime= (paf->end - paf->sta)/totpart;
/* remember full hierarchy */
par= ob;
while(par) {
pushdata(par, sizeof(Object));
par= par->parent;
}
/* for static particles, calculate system on current frame */
if(ma) do_mat_ipo(ma);
/* set it all at first frame */
G.scene->r.cfra= cfralast= (int)floor(ftime);
par= ob;
while(par) {
/* do_ob_ipo(par); */
do_ob_key(par);
par= par->parent;
}
if((paf->flag & PAF_STATIC)==0) {
if(ma) do_mat_ipo(ma); // nor for static
where_is_object(ob);
Mat4CpyMat4(prevobmat, ob->obmat);
Mat4Invert(ob->imat, ob->obmat);
Mat3CpyMat4(imat, ob->imat);
}
else {
Mat4One(prevobmat);
Mat3One(imat);
}
BLI_srand(paf->seed);
/* otherwise it goes way too fast */
force[0]= paf->force[0]*0.05f;
force[1]= paf->force[1]*0.05f;
force[2]= paf->force[2]*0.05f;
if( paf->flag & PAF_STATIC ) deform= 0;
else {
deform= (ob->parent && ob->parent->type==OB_LATTICE);
if(deform) init_latt_deform(ob->parent, 0);
}
/* init */
give_mesh_mvert(me, totpart, co, no, paf->seed);
if(G.f & G_DEBUG) {
printf("\n");
printf("Calculating particles......... \n");
}
for(a=0; a<totpart; a++, ftime+=dtime) {
pa= new_particle(paf);
pa->time= ftime;
if(G.f & G_DEBUG) {
int b, c;
c = totpart/100;
if (c==0){
c = 1;
}
b=(a%c);
if (b==0) {
printf("\r Particle: %d / %d ", a, totpart);
fflush(stdout);
}
}
/* set ob at correct time */
if((paf->flag & PAF_STATIC)==0) {
cur= (int)floor(ftime) + 1 ; /* + 1 has a reason: (obmat/prevobmat) otherwise comet-tails start too late */
if(cfralast != cur) {
G.scene->r.cfra= cfralast= cur;
/* added later: blur? */
bsystem_time(ob, ob->parent, (float)G.scene->r.cfra, 0.0);
par= ob;
while(par) {
/* do_ob_ipo(par); */
par->ctime= -1234567.0;
do_ob_key(par);
par= par->parent;
}
if(ma) do_mat_ipo(ma);
Mat4CpyMat4(prevobmat, ob->obmat);
where_is_object(ob);
Mat4Invert(ob->imat, ob->obmat);
Mat3CpyMat4(imat, ob->imat);
}
}
/* get coordinates */
if(paf->flag & PAF_FACE) give_mesh_mvert(me, a, co, no,paf->seed);
else {
mvert= me->mvert + (a % me->totvert);
VECCOPY(co, mvert->co);
VECCOPY(no, mvert->no);
}
VECCOPY(pa->co, co);
if(paf->flag & PAF_STATIC);
else {
Mat4MulVecfl(ob->obmat, pa->co);
VECCOPY(vec, co);
Mat4MulVecfl(prevobmat, vec);
/* first start speed: object */
VECSUB(pa->no, pa->co, vec);
VecMulf(pa->no, paf->obfac);
/* calculate the correct inter-frame */
fac= (ftime- (float)floor(ftime));
pa->co[0]= fac*pa->co[0] + (1.0f-fac)*vec[0];
pa->co[1]= fac*pa->co[1] + (1.0f-fac)*vec[1];
pa->co[2]= fac*pa->co[2] + (1.0f-fac)*vec[2];
}
/* start speed: normal */
if(paf->normfac!=0.0) {
/* sp= mvert->no; */
/* transpose ! */
vec[0]= imat[0][0]*no[0] + imat[0][1]*no[1] + imat[0][2]*no[2];
vec[1]= imat[1][0]*no[0] + imat[1][1]*no[1] + imat[1][2]*no[2];
vec[2]= imat[2][0]*no[0] + imat[2][1]*no[1] + imat[2][2]*no[2];
Normalise(vec);
VecMulf(vec, paf->normfac);
VECADD(pa->no, pa->no, vec);
}
pa->lifetime= paf->lifetime;
if(paf->randlife!=0.0) {
pa->lifetime*= 1.0f+ (float)(paf->randlife*( BLI_drand() - 0.5));
}
pa->mat_nr= 1;
make_particle_keys(0, a, paf, pa, force, deform, mtexmove, ob->lay);
}
if(G.f & G_DEBUG) {
printf("\r Particle: %d / %d \n", totpart, totpart);
fflush(stdout);
}
if(deform) end_latt_deform();
/* restore */
G.scene->r.cfra= cfraont;
G.scene->r.framelen= framelenont;
give_mesh_mvert(0, 0, 0, 0,paf->seed);
/* put hierarchy back */
par= ob;
while(par) {
popfirst(par);
/* do not do ob->ipo: keep insertkey */
do_ob_key(par);
par= par->parent;
}
/* reset deflector cache */
for(base= G.scene->base.first; base; base= base->next) {
if(base->object->sumohandle) {
MEM_freeN(base->object->sumohandle);
base->object->sumohandle= NULL;
}
}
/* restore: AFTER popfirst */
ob->sf= sfraont;
if(ma) do_mat_ipo(ma); // set back on current time
disable_speed_curve(0);
mesh_modifier(ob, 'e');
waitcursor(0);
}
/* ************* WAVE **************** */
void calc_wave_deform(WaveEff *wav, float ctime, float *co)
{
/* co is in local coords */
float lifefac, x, y, amplit;
/* actually this should not happen */
if((wav->flag & (WAV_X+WAV_Y))==0) return;
lifefac= wav->height;
if( wav->lifetime!=0.0) {
x= ctime - wav->timeoffs;
if(x>wav->lifetime) {
lifefac= x-wav->lifetime;
if(lifefac > wav->damp) lifefac= 0.0;
else lifefac= (float)(wav->height*(1.0 - sqrt(lifefac/wav->damp)));
}
}
if(lifefac==0.0) return;
x= co[0]-wav->startx;
y= co[1]-wav->starty;
if(wav->flag & WAV_X) {
if(wav->flag & WAV_Y) amplit= (float)sqrt( (x*x + y*y));
else amplit= x;
}
else amplit= y;
/* this way it makes nice circles */
amplit-= (ctime-wav->timeoffs)*wav->speed;
if(wav->flag & WAV_CYCL) {
amplit = (float)fmod(amplit-wav->width, 2.0*wav->width) + wav->width;
}
/* GAUSSIAN */
if(amplit> -wav->width && amplit<wav->width) {
amplit = amplit*wav->narrow;
amplit= (float)(1.0/exp(amplit*amplit) - wav->minfac);
co[2]+= lifefac*amplit;
}
}
/* return 1 if deformed
Note: it works on mvert now, so assumes to be callied in modifier stack \
*/
int object_wave(Object *ob)
{
WaveEff *wav;
Mesh *me;
MVert *mvert;
float ctime;
int a;
/* is there a wave */
wav= ob->effect.first;
while(wav) {
if(wav->type==EFF_WAVE) break;
wav= wav->next;
}
if(wav==NULL) return 0;
if(ob->type==OB_MESH) {
ctime= bsystem_time(ob, 0, (float)G.scene->r.cfra, 0.0);
me= ob->data;
wav= ob->effect.first;
while(wav) {
if(wav->type==EFF_WAVE) {
/* precalculate */
wav->minfac= (float)(1.0/exp(wav->width*wav->narrow*wav->width*wav->narrow));
if(wav->damp==0) wav->damp= 10.0f;
mvert= me->mvert;
for(a=0; a<me->totvert; a++, mvert++) {
calc_wave_deform(wav, ctime, mvert->co);
}
}
wav= wav->next;
}
}
return 1;
}