Files
test/source/blender/blenkernel/intern/fcurve_cache.c
Sergey Sharybin c1bc70b711 Cleanup: Add a copyright notice to files and use SPDX format
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.

This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.

Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.

Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:

    https://reuse.software/faq/
2023-05-31 16:19:06 +02:00

173 lines
5.1 KiB
C

/* SPDX-FileCopyrightText: 2023 Blender Foundation
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*
* Cache F-Curve look-ups.
*/
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "BLI_ghash.h"
#include "BLI_listbase.h"
#include "BKE_fcurve.h"
/* -------------------------------------------------------------------- */
/** \name F-Curve Path Cache
*
* Cache for finding curves by RNA path & array index.
* \{ */
struct FCurvePathCache_Span {
/** Index in the #FCurvePathCache.fcurve_array indicating the start of the span. */
uint index;
/** Number of items in the span in #FCurvePathCache.fcurve_array that share an RNA path. */
uint len;
};
struct FCurvePathCache {
/** All curves sorted by (#FCurve.rna_path, #FCurve.array_index) */
FCurve **fcurve_array;
uint fcurve_array_len;
/** Storage for values of `span_from_rna_path`. */
struct FCurvePathCache_Span *span_table;
/** Map `FCurve.rna_path` to elements in #FCurvePathCache.span_table */
GHash *span_from_rna_path;
};
/**
* #qsort callback for an #FCurve array.
*/
static int fcurve_cmp_for_cache(const void *fcu_a_p, const void *fcu_b_p)
{
const FCurve *fcu_a = *((const FCurve **)fcu_a_p);
const FCurve *fcu_b = *((const FCurve **)fcu_b_p);
const int cmp = strcmp(fcu_a->rna_path, fcu_b->rna_path);
if (cmp != 0) {
return cmp;
}
if (fcu_a->array_index < fcu_b->array_index) {
return -1;
}
if (fcu_a->array_index > fcu_b->array_index) {
return 1;
}
return 0;
}
struct FCurvePathCache *BKE_fcurve_pathcache_create(ListBase *list)
{
const uint fcurve_array_len = BLI_listbase_count(list);
FCurve **fcurve_array = MEM_mallocN(sizeof(*fcurve_array) * fcurve_array_len, __func__);
uint i;
LISTBASE_FOREACH_INDEX (FCurve *, fcu, list, i) {
fcurve_array[i] = fcu;
}
qsort(fcurve_array, fcurve_array_len, sizeof(FCurve *), fcurve_cmp_for_cache);
/* Allow for the case no F-Curves share an RNA-path, otherwise this is over-allocated.
* Although in practice it's likely to only be 3-4x as large as is needed
* (with transform channels for e.g.). */
struct FCurvePathCache_Span *span_table = MEM_mallocN(sizeof(*span_table) * fcurve_array_len,
__func__);
/* May over reserve, harmless. */
GHash *span_from_rna_path = BLI_ghash_str_new_ex(__func__, fcurve_array_len);
uint span_index = 0;
i = 0;
while (i < fcurve_array_len) {
uint i_end;
for (i_end = i + 1; i_end < fcurve_array_len; i_end++) {
/* As the indices are sorted, we know a decrease means a new RNA path is found. */
if (fcurve_array[i]->array_index > fcurve_array[i_end]->array_index) {
BLI_assert(!STREQ(fcurve_array[i]->rna_path, fcurve_array[i_end]->rna_path));
break;
}
if (!STREQ(fcurve_array[i]->rna_path, fcurve_array[i_end]->rna_path)) {
break;
}
}
struct FCurvePathCache_Span *span = &span_table[span_index++];
span->index = i;
span->len = i_end - i;
BLI_ghash_insert(span_from_rna_path, fcurve_array[i]->rna_path, span);
i = i_end;
}
struct FCurvePathCache *fcache = MEM_callocN(sizeof(struct FCurvePathCache), __func__);
fcache->fcurve_array = fcurve_array;
fcache->fcurve_array_len = fcurve_array_len;
fcache->span_table = span_table;
fcache->span_from_rna_path = span_from_rna_path;
return fcache;
}
void BKE_fcurve_pathcache_destroy(struct FCurvePathCache *fcache)
{
MEM_freeN(fcache->fcurve_array);
MEM_freeN(fcache->span_table);
BLI_ghash_free(fcache->span_from_rna_path, NULL, NULL);
MEM_freeN(fcache);
}
FCurve *BKE_fcurve_pathcache_find(struct FCurvePathCache *fcache,
const char *rna_path,
const int array_index)
{
const struct FCurvePathCache_Span *span = BLI_ghash_lookup(fcache->span_from_rna_path, rna_path);
if (span == NULL) {
return NULL;
}
FCurve **fcurve = fcache->fcurve_array + span->index;
const uint len = span->len;
for (int i = 0; i < len; i++) {
if (fcurve[i]->array_index == array_index) {
return fcurve[i];
}
/* As these are sorted, early exit. */
if (fcurve[i]->array_index > array_index) {
break;
}
}
return NULL;
}
int BKE_fcurve_pathcache_find_array(struct FCurvePathCache *fcache,
const char *rna_path,
FCurve **fcurve_result,
int fcurve_result_len)
{
memset(fcurve_result, 0x0, sizeof(*fcurve_result) * fcurve_result_len);
const struct FCurvePathCache_Span *span = BLI_ghash_lookup(fcache->span_from_rna_path, rna_path);
if (span == NULL) {
return 0;
}
int found = 0;
FCurve **fcurve = fcache->fcurve_array + span->index;
const uint len = span->len;
for (int i = 0; i < len; i++) {
/* As these are sorted, early exit. */
if ((uint)fcurve[i]->array_index > (uint)fcurve_result_len) {
break;
}
fcurve_result[fcurve[i]->array_index] = fcurve[i];
found += 1;
}
return found;
}
/** \} */