- Use uppercase NOTE: tags. - Correct bNote -> bNode. - Use colon after parameters. - Use doxy-style doc-strings.
388 lines
16 KiB
C
388 lines
16 KiB
C
/* SPDX-FileCopyrightText: 2009-2010 Sony Pictures Imageworks Inc., et al. All Rights Reserved.
|
|
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Adapted code from Open Shading Language. */
|
|
|
|
#pragma once
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Compute fresnel reflectance for perpendicular (aka S-) and parallel (aka P-) polarized light.
|
|
* If requested by the caller, r_phi is set to the phase shift on reflection.
|
|
* Also returns the dot product of the refracted ray and the normal as `cos_theta_t`, as it is
|
|
* used when computing the direction of the refracted ray. */
|
|
ccl_device float2 fresnel_dielectric_polarized(float cos_theta_i,
|
|
float eta,
|
|
ccl_private float *r_cos_theta_t,
|
|
ccl_private float2 *r_phi)
|
|
{
|
|
kernel_assert(!isnan_safe(cos_theta_i));
|
|
|
|
/* Using Snell's law, calculate the squared cosine of the angle between the surface normal and
|
|
* the transmitted ray. */
|
|
const float eta_cos_theta_t_sq = sqr(eta) - (1.0f - sqr(cos_theta_i));
|
|
if (eta_cos_theta_t_sq <= 0) {
|
|
/* Total internal reflection. */
|
|
if (r_phi) {
|
|
/* The following code would compute the proper phase shift on TIR.
|
|
* However, for the current user of this computation (the iridescence code),
|
|
* this doesn't actually affect the result, so don't bother with the computation for now.
|
|
*
|
|
* `const float fac = sqrtf(1.0f - sqr(cosThetaI) - sqr(eta));`
|
|
* `r_phi->x = -2.0f * atanf(fac / cosThetaI);`
|
|
* `r_phi->y = -2.0f * atanf(fac / (cosThetaI * sqr(eta)));`
|
|
*/
|
|
*r_phi = zero_float2();
|
|
}
|
|
return one_float2();
|
|
}
|
|
|
|
cos_theta_i = fabsf(cos_theta_i);
|
|
/* Relative to the surface normal. */
|
|
const float cos_theta_t = -safe_sqrtf(eta_cos_theta_t_sq) / eta;
|
|
|
|
if (r_cos_theta_t) {
|
|
*r_cos_theta_t = cos_theta_t;
|
|
}
|
|
|
|
/* Amplitudes of reflected waves. */
|
|
const float r_s = (cos_theta_i + eta * cos_theta_t) / (cos_theta_i - eta * cos_theta_t);
|
|
const float r_p = (cos_theta_t + eta * cos_theta_i) / (eta * cos_theta_i - cos_theta_t);
|
|
|
|
if (r_phi) {
|
|
*r_phi = make_float2(r_s < 0.0f, r_p < 0.0f) * M_PI_F;
|
|
}
|
|
|
|
/* Return squared amplitude to get the fraction of reflected energy. */
|
|
return make_float2(sqr(r_s), sqr(r_p));
|
|
}
|
|
|
|
/* Compute fresnel reflectance for unpolarized light. */
|
|
ccl_device_forceinline float fresnel_dielectric(float cos_theta_i,
|
|
float eta,
|
|
ccl_private float *r_cos_theta_t)
|
|
{
|
|
return average(fresnel_dielectric_polarized(cos_theta_i, eta, r_cos_theta_t, nullptr));
|
|
}
|
|
|
|
/* Refract the incident ray, given the cosine of the refraction angle and the relative refractive
|
|
* index of the incoming medium w.r.t. the outgoing medium. */
|
|
ccl_device_inline float3 refract_angle(const float3 incident,
|
|
const float3 normal,
|
|
const float cos_theta_t,
|
|
const float inv_eta)
|
|
{
|
|
return (inv_eta * dot(normal, incident) + cos_theta_t) * normal - inv_eta * incident;
|
|
}
|
|
|
|
ccl_device float fresnel_dielectric_cos(float cosi, float eta)
|
|
{
|
|
// compute fresnel reflectance without explicitly computing
|
|
// the refracted direction
|
|
float c = fabsf(cosi);
|
|
float g = eta * eta - 1 + c * c;
|
|
if (g > 0) {
|
|
g = sqrtf(g);
|
|
float A = (g - c) / (g + c);
|
|
float B = (c * (g + c) - 1) / (c * (g - c) + 1);
|
|
return 0.5f * A * A * (1 + B * B);
|
|
}
|
|
return 1.0f; // TIR(no refracted component)
|
|
}
|
|
|
|
ccl_device Spectrum fresnel_conductor(float cosi, const Spectrum eta, const Spectrum k)
|
|
{
|
|
Spectrum cosi2 = make_spectrum(cosi * cosi);
|
|
Spectrum one = make_spectrum(1.0f);
|
|
Spectrum tmp_f = eta * eta + k * k;
|
|
Spectrum tmp = tmp_f * cosi2;
|
|
Spectrum Rparl2 = (tmp - (2.0f * eta * cosi) + one) / (tmp + (2.0f * eta * cosi) + one);
|
|
Spectrum Rperp2 = (tmp_f - (2.0f * eta * cosi) + cosi2) / (tmp_f + (2.0f * eta * cosi) + cosi2);
|
|
return (Rparl2 + Rperp2) * 0.5f;
|
|
}
|
|
|
|
ccl_device float ior_from_F0(float f0)
|
|
{
|
|
const float sqrt_f0 = sqrtf(clamp(f0, 0.0f, 0.99f));
|
|
return (1.0f + sqrt_f0) / (1.0f - sqrt_f0);
|
|
}
|
|
|
|
ccl_device float F0_from_ior(float ior)
|
|
{
|
|
return sqr((ior - 1.0f) / (ior + 1.0f));
|
|
}
|
|
|
|
ccl_device float schlick_fresnel(float u)
|
|
{
|
|
float m = clamp(1.0f - u, 0.0f, 1.0f);
|
|
float m2 = m * m;
|
|
return m2 * m2 * m; // pow(m, 5)
|
|
}
|
|
|
|
/* Calculate the fresnel color, which is a blend between white and the F0 color */
|
|
ccl_device_forceinline Spectrum interpolate_fresnel_color(float3 L,
|
|
float3 H,
|
|
float ior,
|
|
Spectrum F0)
|
|
{
|
|
/* Compute the real Fresnel term and remap it from real_F0..1 to F0..1.
|
|
* The reason why we use this remapping instead of directly doing the
|
|
* Schlick approximation mix(F0, 1.0, (1.0-cosLH)^5) is that for cases
|
|
* with similar IORs (e.g. ice in water), the relative IOR can be close
|
|
* enough to 1.0 that the Schlick approximation becomes inaccurate. */
|
|
float real_F = fresnel_dielectric_cos(dot(L, H), ior);
|
|
float real_F0 = fresnel_dielectric_cos(1.0f, ior);
|
|
|
|
return mix(F0, one_spectrum(), inverse_lerp(real_F0, 1.0f, real_F));
|
|
}
|
|
|
|
/* If the shading normal results in specular reflection in the lower hemisphere, raise the shading
|
|
* normal towards the geometry normal so that the specular reflection is just above the surface.
|
|
* Only used for glossy materials. */
|
|
ccl_device float3 ensure_valid_specular_reflection(float3 Ng, float3 I, float3 N)
|
|
{
|
|
const float3 R = 2 * dot(N, I) * N - I;
|
|
|
|
const float Iz = dot(I, Ng);
|
|
kernel_assert(Iz >= 0);
|
|
|
|
/* Reflection rays may always be at least as shallow as the incoming ray. */
|
|
const float threshold = min(0.9f * Iz, 0.01f);
|
|
if (dot(Ng, R) >= threshold) {
|
|
return N;
|
|
}
|
|
|
|
/* Form coordinate system with Ng as the Z axis and N inside the X-Z-plane.
|
|
* The X axis is found by normalizing the component of N that's orthogonal to Ng.
|
|
* The Y axis isn't actually needed.
|
|
*/
|
|
const float3 X = safe_normalize_fallback(N - dot(N, Ng) * Ng, N);
|
|
|
|
/* Calculate N.z and N.x in the local coordinate system.
|
|
*
|
|
* The goal of this computation is to find a N' that is rotated towards Ng just enough
|
|
* to lift R' above the threshold (here called t), therefore dot(R', Ng) = t.
|
|
*
|
|
* According to the standard reflection equation,
|
|
* this means that we want dot(2*dot(N', I)*N' - I, Ng) = t.
|
|
*
|
|
* Since the Z axis of our local coordinate system is Ng, dot(x, Ng) is just x.z, so we get
|
|
* 2*dot(N', I)*N'.z - I.z = t.
|
|
*
|
|
* The rotation is simple to express in the coordinate system we formed -
|
|
* since N lies in the X-Z-plane, we know that N' will also lie in the X-Z-plane,
|
|
* so N'.y = 0 and therefore dot(N', I) = N'.x*I.x + N'.z*I.z .
|
|
*
|
|
* Furthermore, we want N' to be normalized, so N'.x = sqrt(1 - N'.z^2).
|
|
*
|
|
* With these simplifications, we get the equation
|
|
* 2*(sqrt(1 - N'.z^2)*I.x + N'.z*I.z)*N'.z - I.z = t,
|
|
* or
|
|
* 2*sqrt(1 - N'.z^2)*I.x*N'.z = t + I.z * (1 - 2*N'.z^2),
|
|
* after rearranging terms.
|
|
* Raise both sides to the power of two and substitute terms with
|
|
* a = I.x^2 + I.z^2,
|
|
* b = 2*(a + Iz*t),
|
|
* c = (Iz + t)^2,
|
|
* we obtain
|
|
* 4*a*N'.z^4 - 2*b*N'.z^2 + c = 0.
|
|
*
|
|
* The only unknown here is N'.z, so we can solve for that.
|
|
*
|
|
* The equation has four solutions in general, two can immediately be discarded because they're
|
|
* negative so N' would lie in the lower hemisphere; one solves
|
|
* 2*sqrt(1 - N'.z^2)*I.x*N'.z = -(t + I.z * (1 - 2*N'.z^2))
|
|
* instead of the original equation (before squaring both sides).
|
|
* Therefore only one root is valid.
|
|
*/
|
|
|
|
const float Ix = dot(I, X);
|
|
|
|
const float a = sqr(Ix) + sqr(Iz);
|
|
const float b = 2.0f * (a + Iz * threshold);
|
|
const float c = sqr(threshold + Iz);
|
|
|
|
/* In order that the root formula solves 2*sqrt(1 - N'.z^2)*I.x*N'.z = t + I.z - 2*I.z*N'.z^2,
|
|
* Ix and (t + I.z * (1 - 2*N'.z^2)) must have the same sign (the rest terms are non-negative by
|
|
* definition). */
|
|
const float Nz2 = (Ix < 0) ? 0.25f * (b + safe_sqrtf(sqr(b) - 4.0f * a * c)) / a :
|
|
0.25f * (b - safe_sqrtf(sqr(b) - 4.0f * a * c)) / a;
|
|
|
|
const float Nx = safe_sqrtf(1.0f - Nz2);
|
|
const float Nz = safe_sqrtf(Nz2);
|
|
|
|
return Nx * X + Nz * Ng;
|
|
}
|
|
|
|
/* Do not call #ensure_valid_specular_reflection if the primitive type is curve or if the geometry
|
|
* normal and the shading normal is the same. */
|
|
ccl_device float3 maybe_ensure_valid_specular_reflection(ccl_private ShaderData *sd, float3 N)
|
|
{
|
|
if ((sd->flag & SD_USE_BUMP_MAP_CORRECTION) == 0) {
|
|
return N;
|
|
}
|
|
if ((sd->type & PRIMITIVE_CURVE) || isequal(sd->Ng, N)) {
|
|
return N;
|
|
}
|
|
return ensure_valid_specular_reflection(sd->Ng, sd->wi, N);
|
|
}
|
|
|
|
/* Principled Hair albedo and absorption coefficients. */
|
|
ccl_device_inline float bsdf_principled_hair_albedo_roughness_scale(
|
|
const float azimuthal_roughness)
|
|
{
|
|
const float x = azimuthal_roughness;
|
|
return (((((0.245f * x) + 5.574f) * x - 10.73f) * x + 2.532f) * x - 0.215f) * x + 5.969f;
|
|
}
|
|
|
|
ccl_device_inline Spectrum
|
|
bsdf_principled_hair_sigma_from_reflectance(const Spectrum color, const float azimuthal_roughness)
|
|
{
|
|
const Spectrum sigma = log(color) /
|
|
bsdf_principled_hair_albedo_roughness_scale(azimuthal_roughness);
|
|
return sigma * sigma;
|
|
}
|
|
|
|
ccl_device_inline Spectrum bsdf_principled_hair_sigma_from_concentration(const float eumelanin,
|
|
const float pheomelanin)
|
|
{
|
|
const float3 eumelanin_color = make_float3(0.506f, 0.841f, 1.653f);
|
|
const float3 pheomelanin_color = make_float3(0.343f, 0.733f, 1.924f);
|
|
|
|
return eumelanin * rgb_to_spectrum(eumelanin_color) +
|
|
pheomelanin * rgb_to_spectrum(pheomelanin_color);
|
|
}
|
|
|
|
/* Computes the weight for base closure(s) which are layered under another closure.
|
|
* layer_albedo is an estimate of the top layer's reflectivity, while weight is the closure weight
|
|
* of the entire base+top combination. */
|
|
ccl_device_inline Spectrum closure_layering_weight(const Spectrum layer_albedo,
|
|
const Spectrum weight)
|
|
{
|
|
return weight * saturatef(1.0f - reduce_max(safe_divide_color(layer_albedo, weight)));
|
|
}
|
|
|
|
/* ******** Thin-film iridescence implementation ********
|
|
*
|
|
* Based on "A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence"
|
|
* by Laurent Belcour and Pascal Barla.
|
|
* https://belcour.github.io/blog/research/publication/2017/05/01/brdf-thin-film.html.
|
|
*/
|
|
|
|
/**
|
|
* Evaluate the sensitivity functions for the Fourier-space spectral integration.
|
|
* The code here uses the Gaussian fit for the CIE XYZ curves that is provided
|
|
* in the reference implementation.
|
|
* For details on what this actually represents, see the paper.
|
|
* In theory we should pre-compute the sensitivity functions for the working RGB
|
|
* color-space, remap them to be functions of (light) frequency, take their Fourier
|
|
* transform and store them as a LUT that gets looked up here.
|
|
* In practice, using the XYZ fit and converting the result from XYZ to RGB is easier.
|
|
*/
|
|
ccl_device_inline Spectrum iridescence_lookup_sensitivity(float OPD, float shift)
|
|
{
|
|
float phase = M_2PI_F * OPD * 1e-9f;
|
|
float3 val = make_float3(5.4856e-13f, 4.4201e-13f, 5.2481e-13f);
|
|
float3 pos = make_float3(1.6810e+06f, 1.7953e+06f, 2.2084e+06f);
|
|
float3 var = make_float3(4.3278e+09f, 9.3046e+09f, 6.6121e+09f);
|
|
|
|
float3 xyz = val * sqrt(M_2PI_F * var) * cos(pos * phase + shift) * exp(-sqr(phase) * var);
|
|
xyz.x += 1.64408e-8f * cosf(2.2399e+06f * phase + shift) * expf(-4.5282e+09f * sqr(phase));
|
|
return xyz / 1.0685e-7f;
|
|
}
|
|
|
|
ccl_device_inline float3
|
|
iridescence_airy_summation(float T121, float R12, float R23, float OPD, float phi)
|
|
{
|
|
if (R23 == 1.0f) {
|
|
/* Shortcut for TIR on the bottom interface. */
|
|
return one_float3();
|
|
}
|
|
|
|
float R123 = R12 * R23;
|
|
float r123 = sqrtf(R123);
|
|
float Rs = sqr(T121) * R23 / (1.0f - R123);
|
|
|
|
/* Perform summation over path order differences (equation 10). */
|
|
float3 R = make_float3(R12 + Rs); /* C0 */
|
|
float Cm = (Rs - T121);
|
|
/* Truncate after m=3, higher differences have barely any impact. */
|
|
for (int m = 1; m < 4; m++) {
|
|
Cm *= r123;
|
|
R += Cm * 2.0f * iridescence_lookup_sensitivity(m * OPD, m * phi);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
ccl_device Spectrum fresnel_iridescence(KernelGlobals kg,
|
|
float eta1,
|
|
float eta2,
|
|
float eta3,
|
|
float cos_theta_1,
|
|
float thickness,
|
|
ccl_private float *r_cos_theta_3)
|
|
{
|
|
/* For films below 30nm, the wave-optic-based Airy summation approach no longer applies,
|
|
* so blend towards the case without coating. */
|
|
if (thickness < 30.0f) {
|
|
eta2 = mix(eta1, eta2, smoothstep(0.0f, 30.0f, thickness));
|
|
}
|
|
|
|
float cos_theta_2;
|
|
float2 phi12, phi23;
|
|
|
|
/* Compute reflection at the top interface (ambient to film). */
|
|
float2 R12 = fresnel_dielectric_polarized(cos_theta_1, eta2 / eta1, &cos_theta_2, &phi12);
|
|
if (isequal(R12, one_float2())) {
|
|
/* TIR at the top interface. */
|
|
return one_spectrum();
|
|
}
|
|
|
|
/* Compute optical path difference inside the thin film. */
|
|
float OPD = -2.0f * eta2 * thickness * cos_theta_2;
|
|
|
|
/* Compute reflection at the bottom interface (film to medium). */
|
|
float2 R23 = fresnel_dielectric_polarized(-cos_theta_2, eta3 / eta2, r_cos_theta_3, &phi23);
|
|
if (isequal(R23, one_float2())) {
|
|
/* TIR at the bottom interface.
|
|
* All the Airy summation math still simplifies to 1.0 in this case. */
|
|
return one_spectrum();
|
|
}
|
|
|
|
/* Compute helper parameters. */
|
|
float2 T121 = one_float2() - R12;
|
|
float2 phi = make_float2(M_PI_F, M_PI_F) - phi12 + phi23;
|
|
|
|
/* Perform Airy summation and average the polarizations. */
|
|
float3 R = mix(iridescence_airy_summation(T121.x, R12.x, R23.x, OPD, phi.x),
|
|
iridescence_airy_summation(T121.y, R12.y, R23.y, OPD, phi.y),
|
|
0.5f);
|
|
|
|
/* Color space conversion here is tricky.
|
|
* In theory, the correct thing would be to compute the spectral color matching functions
|
|
* for the RGB channels, take their Fourier transform in wavelength parametrization, and
|
|
* then use that in iridescence_lookup_sensitivity().
|
|
* To avoid this complexity, the code here instead uses the reference implementation's
|
|
* Gaussian fit of the CIE XYZ curves. However, this means that at this point, R is in
|
|
* XYZ values, not RGB.
|
|
* Additionally, since I is a reflectivity, not a luminance, the spectral color matching
|
|
* functions should be multiplied by the reference illuminant. Since the fit is based on
|
|
* the "raw" CIE XYZ curves, the reference illuminant implicitly is a constant spectrum,
|
|
* meaning Illuminant E.
|
|
* Therefore, we can't just use the regular XYZ->RGB conversion here, we need to include
|
|
* a chromatic adaption from E to whatever the white point of the working color space is.
|
|
* The proper way to do this would be a Von Kries-style transform, but to keep it simple,
|
|
* we just multiply by the white point here.
|
|
*
|
|
* NOTE: The reference implementation sidesteps all this by just hard-coding a XYZ->CIE RGB
|
|
* matrix. Since CIE RGB uses E as its white point, this sidesteps the chromatic adaption
|
|
* topic, but the primary colors don't match (unless you happen to actually work in CIE RGB.)
|
|
*/
|
|
R *= float4_to_float3(kernel_data.film.white_xyz);
|
|
return saturate(xyz_to_rgb(kg, R));
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|