Files
test/intern/cycles/kernel/light/triangle.h

341 lines
12 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include "kernel/globals.h"
#include "kernel/light/common.h"
#include "kernel/geom/motion_triangle.h"
#include "kernel/geom/object.h"
#include "kernel/geom/triangle.h"
#include "util/math_fast.h"
#include "util/math_intersect.h"
CCL_NAMESPACE_BEGIN
/* returns true if the triangle is has motion blur or an instancing transform applied */
ccl_device_inline bool triangle_world_space_vertices(
KernelGlobals kg, const int object, const int prim, const float time, float3 V[3])
{
bool has_motion = false;
const int object_flag = kernel_data_fetch(object_flag, object);
if (object_flag & SD_OBJECT_HAS_VERTEX_MOTION && time >= 0.0f) {
motion_triangle_vertices(kg, object, prim, time, V);
has_motion = true;
}
else {
triangle_vertices(kg, prim, V);
}
if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
#ifdef __OBJECT_MOTION__
const float object_time = (time >= 0.0f) ? time : 0.5f;
const Transform tfm = object_fetch_transform_motion_test(kg, object, object_time, nullptr);
#else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
V[0] = transform_point(&tfm, V[0]);
V[1] = transform_point(&tfm, V[1]);
V[2] = transform_point(&tfm, V[2]);
has_motion = true;
}
return has_motion;
}
ccl_device_inline float triangle_light_pdf_area_sampling(const float3 Ng,
const float3 I,
const float t)
{
const float cos_pi = fabsf(dot(Ng, I));
if (cos_pi == 0.0f) {
return 0.0f;
}
return t * t / cos_pi;
}
ccl_device_forceinline float triangle_light_pdf(KernelGlobals kg,
const ccl_private ShaderData *sd,
const float t)
{
/* A naive heuristic to decide between costly solid angle sampling
* and simple area sampling, comparing the distance to the triangle plane
* to the length of the edges of the triangle. */
float3 V[3];
const bool has_motion = triangle_world_space_vertices(kg, sd->object, sd->prim, sd->time, V);
const float3 e0 = V[1] - V[0];
const float3 e1 = V[2] - V[0];
const float3 e2 = V[2] - V[1];
const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
const float3 N = cross(e0, e1);
const float distance_to_plane = fabsf(dot(N, sd->wi * t)) / dot(N, N);
const float area = 0.5f * len(N);
float pdf;
if (longest_edge_squared > distance_to_plane * distance_to_plane) {
/* sd contains the point on the light source
* calculate Px, the point that we're shading */
const float3 Px = sd->P + sd->wi * t;
const float3 A = safe_normalize(V[0] - Px);
const float3 B = safe_normalize(V[1] - Px);
const float3 C = safe_normalize(V[2] - Px);
const float solid_angle = 2.0f * fast_atan2f(fabsf(dot(A, cross(B, C))),
(1.0f + dot(B, C) + dot(A, C) + dot(A, B)));
/* distribution_pdf_triangles is calculated over triangle area, but we're not sampling over
* its area */
if (UNLIKELY(solid_angle == 0.0f)) {
return 0.0f;
}
pdf = 1.0f / solid_angle;
}
else {
if (UNLIKELY(area == 0.0f)) {
return 0.0f;
}
pdf = triangle_light_pdf_area_sampling(sd->Ng, sd->wi, t) / area;
}
/* Belongs in distribution.h but can reuse computations here. */
if (!kernel_data.integrator.use_light_tree) {
float distribution_area = area;
if (has_motion && area != 0.0f) {
/* For motion blur need area of triangle at fixed time as used in the CDF. */
triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
distribution_area = triangle_area(V[0], V[1], V[2]);
}
pdf *= distribution_area * kernel_data.integrator.distribution_pdf_triangles;
}
return pdf;
}
template<bool in_volume_segment>
ccl_device_forceinline bool triangle_light_sample(KernelGlobals kg,
const int prim,
const int object,
const float2 rand,
const float time,
ccl_private LightSample *ls,
const float3 P)
{
/* A naive heuristic to decide between costly solid angle sampling
* and simple area sampling, comparing the distance to the triangle plane
* to the length of the edges of the triangle. */
float3 V[3];
const bool has_motion = triangle_world_space_vertices(kg, object, prim, time, V);
const float3 e0 = V[1] - V[0];
const float3 e1 = V[2] - V[0];
const float3 e2 = V[2] - V[1];
const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
float3 N0 = cross(e0, e1);
/* Flip normal if necessary. */
const int object_flag = kernel_data_fetch(object_flag, object);
if (object_flag & SD_OBJECT_NEGATIVE_SCALE) {
N0 = -N0;
}
/* Do not draw samples from the side without MIS. */
ls->shader = kernel_data_fetch(tri_shader, prim);
const float distance_to_plane = dot(N0, V[0] - P) / dot(N0, N0);
const int ls_shader_flag = kernel_data_fetch(shaders, ls->shader & SHADER_MASK).flags;
if (!in_volume_segment &&
!(ls_shader_flag & (distance_to_plane > 0 ? SD_MIS_BACK : SD_MIS_FRONT)))
{
return false;
}
float Nl = 0.0f;
ls->Ng = safe_normalize_len(N0, &Nl);
const float area = 0.5f * Nl;
ls->eval_fac = 1.0f;
ls->object = object;
ls->prim = prim;
ls->lamp = LAMP_NONE;
ls->shader |= SHADER_USE_MIS;
ls->type = LIGHT_TRIANGLE;
ls->group = object_lightgroup(kg, object);
if (!in_volume_segment && (longest_edge_squared > distance_to_plane * distance_to_plane)) {
/* A modified version of James Arvo, "Stratified Sampling of Spherical Triangles"
* http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */
/* Project the triangle to the unit sphere and calculate the three unit vector that spans the
* spherical triangle. */
const float3 A = safe_normalize(V[0] - P);
const float3 B = safe_normalize(V[1] - P);
const float3 C = safe_normalize(V[2] - P);
const float cos_a = dot(B, C);
const float cos_b = dot(A, C);
const float cos_c = dot(A, B);
const float mixed_product = fabsf(dot(A, cross(B, C)));
/* The area of the spherical triangle is equal to the subtended solid angle. */
const float solid_angle = 2.0f * fast_atan2f(mixed_product, (1.0f + cos_a + cos_b + cos_c));
/* Compute the angle at A. */
const float cos_alpha = dot(safe_normalize(cross(A, B)), safe_normalize(cross(A, C)));
const float sin_alpha = sin_from_cos(cos_alpha);
const float alpha = safe_acosf(cos_alpha);
/* Select a random sub-area of the spherical triangle and calculate the third vertex C_ of that
* new triangle. */
const float A_hat = rand.x * solid_angle;
float sin_phi;
float cos_phi;
fast_sincosf(A_hat - alpha, &sin_phi, &cos_phi);
const float u = cos_phi - cos_alpha;
const float v = sin_phi + sin_alpha * cos_c;
const float num = (v * cos_phi - u * sin_phi) * cos_alpha - v;
const float den = (v * sin_phi + u * cos_phi) * sin_alpha;
const float q = (den == 0.0f) ? 1.0f : num / den;
const float3 U = safe_normalize(C - cos_b * A);
const float3 C_ = safe_normalize(q * A + sin_from_cos(q) * U);
/* Finally, select a random point along the edge of the new triangle
* That point on the spherical triangle is the sampled ray direction */
const float z = 1.0f - rand.y * (1.0f - dot(C_, B));
ls->D = z * B + sin_from_cos(z) * safe_normalize(C_ - dot(C_, B) * B);
/* calculate intersection with the planar triangle */
if (!ray_triangle_intersect(P, ls->D, 0.0f, FLT_MAX, V[0], V[1], V[2], &ls->u, &ls->v, &ls->t))
{
ls->pdf = 0.0f;
return false;
}
ls->P = P + ls->D * ls->t;
/* distribution_pdf_triangles is calculated over triangle area, but we're sampling over solid
* angle */
if (UNLIKELY(solid_angle == 0.0f)) {
ls->pdf = 0.0f;
return false;
}
ls->pdf = 1.0f / solid_angle;
}
else {
if (UNLIKELY(area == 0.0f)) {
return 0.0f;
}
/* compute random point in triangle. From Eric Heitz's "A Low-Distortion Map Between Triangle
* and Square" */
float u = rand.x;
float v = rand.y;
if (v > u) {
u *= 0.5f;
v -= u;
}
else {
v *= 0.5f;
u -= v;
}
const float t = 1.0f - u - v;
ls->P = t * V[0] + u * V[1] + v * V[2];
/* compute incoming direction, distance and pdf */
ls->D = normalize_len(ls->P - P, &ls->t);
ls->pdf = triangle_light_pdf_area_sampling(ls->Ng, -ls->D, ls->t) / area;
ls->u = u;
ls->v = v;
}
/* Belongs in distribution.h but can reuse computations here. */
if (!kernel_data.integrator.use_light_tree) {
float distribution_area = area;
if (has_motion && area != 0.0f) {
/* For motion blur need area of triangle at fixed time as used in the CDF. */
triangle_world_space_vertices(kg, object, prim, -1.0f, V);
distribution_area = triangle_area(V[0], V[1], V[2]);
}
ls->pdf_selection = distribution_area * kernel_data.integrator.distribution_pdf_triangles;
}
return (ls->pdf > 0.0f);
}
/* Find the ray segment lit by the triangle light. */
ccl_device_inline bool triangle_light_valid_ray_segment(KernelGlobals kg,
const float3 P,
const float3 D,
ccl_private Interval<float> *t_range,
const ccl_private LightSample *ls)
{
const int shader_flag = kernel_data_fetch(shaders, ls->shader & SHADER_MASK).flags;
const int SD_MIS_BOTH = SD_MIS_BACK | SD_MIS_FRONT;
if ((shader_flag & SD_MIS_BOTH) == SD_MIS_BOTH) {
/* Both sides are sampled, the complete ray segment is visible. */
return true;
}
/* Only one side is sampled, intersect the ray and the triangle light plane to find the visible
* ray segment. Flip normal if Emission Sampling is set to back. */
const float3 N = ls->Ng;
return ray_plane_intersect((shader_flag & SD_MIS_BACK) ? -N : N, P, D, t_range);
}
template<bool in_volume_segment>
ccl_device_forceinline bool triangle_light_tree_parameters(
KernelGlobals kg,
const ccl_global KernelLightTreeEmitter *kemitter,
const float3 centroid,
const float3 P,
const float3 N,
const KernelBoundingCone bcone,
ccl_private float &cos_theta_u,
ccl_private float2 &distance,
ccl_private float3 &point_to_centroid)
{
/* TODO: a cheap substitute for minimal distance between point and primitive. Does it worth the
* overhead to compute the accurate minimal distance? */
float min_distance;
point_to_centroid = safe_normalize_len(centroid - P, &min_distance);
distance = make_float2(min_distance, min_distance);
cos_theta_u = FLT_MAX;
float3 vertices[3];
triangle_vertices(kg, kemitter->triangle.id, vertices);
bool shape_above_surface = false;
for (int i = 0; i < 3; i++) {
const float3 corner = vertices[i];
float distance_point_to_corner;
const float3 point_to_corner = safe_normalize_len(corner - P, &distance_point_to_corner);
cos_theta_u = fminf(cos_theta_u, dot(point_to_centroid, point_to_corner));
shape_above_surface |= dot(point_to_corner, N) > 0;
if (!in_volume_segment) {
distance.x = fmaxf(distance.x, distance_point_to_corner);
}
}
const bool front_facing = bcone.theta_o != 0.0f || dot(bcone.axis, point_to_centroid) < 0;
return front_facing && shape_above_surface;
}
CCL_NAMESPACE_END