Files
test/source/blender/blenkernel/intern/node_tree_update.cc
Brecht Van Lommel c7a33a62a2 Cleanup: Directly include DNA_userdef_types.h and BLI_listbase.h
Instead of relying on them being included indirectly.

Pull Request: https://projects.blender.org/blender/blender/pulls/134406
2025-02-12 23:01:08 +01:00

1876 lines
63 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include <fmt/format.h>
#include "BLI_listbase.h"
#include "BLI_map.hh"
#include "BLI_multi_value_map.hh"
#include "BLI_noise.hh"
#include "BLI_rand.hh"
#include "BLI_set.hh"
#include "BLI_stack.hh"
#include "BLI_string_utf8_symbols.h"
#include "BLI_vector_set.hh"
#include "DNA_anim_types.h"
#include "DNA_modifier_types.h"
#include "DNA_node_types.h"
#include "BKE_anim_data.hh"
#include "BKE_image.hh"
#include "BKE_lib_id.hh"
#include "BKE_main.hh"
#include "BKE_node.hh"
#include "BKE_node_enum.hh"
#include "BKE_node_legacy_types.hh"
#include "BKE_node_runtime.hh"
#include "BKE_node_tree_reference_lifetimes.hh"
#include "BKE_node_tree_update.hh"
#include "MOD_nodes.hh"
#include "NOD_geometry_nodes_dependencies.hh"
#include "NOD_geometry_nodes_gizmos.hh"
#include "NOD_geometry_nodes_lazy_function.hh"
#include "NOD_node_declaration.hh"
#include "NOD_socket.hh"
#include "NOD_texture.h"
#include "DEG_depsgraph_build.hh"
#include "BLT_translation.hh"
using namespace blender::nodes;
/**
* These flags are used by the `changed_flag` field in #bNodeTree, #bNode and #bNodeSocket.
* This enum is not part of the public api. It should be used through the `BKE_ntree_update_tag_*`
* api.
*/
enum eNodeTreeChangedFlag {
NTREE_CHANGED_NOTHING = 0,
NTREE_CHANGED_ANY = (1 << 1),
NTREE_CHANGED_NODE_PROPERTY = (1 << 2),
NTREE_CHANGED_NODE_OUTPUT = (1 << 3),
NTREE_CHANGED_LINK = (1 << 4),
NTREE_CHANGED_REMOVED_NODE = (1 << 5),
NTREE_CHANGED_REMOVED_SOCKET = (1 << 6),
NTREE_CHANGED_SOCKET_PROPERTY = (1 << 7),
NTREE_CHANGED_INTERNAL_LINK = (1 << 8),
NTREE_CHANGED_PARENT = (1 << 9),
NTREE_CHANGED_ALL = -1,
};
static void add_tree_tag(bNodeTree *ntree, const eNodeTreeChangedFlag flag)
{
ntree->runtime->changed_flag |= flag;
ntree->runtime->topology_cache_mutex.tag_dirty();
ntree->runtime->tree_zones_cache_mutex.tag_dirty();
ntree->runtime->inferenced_input_socket_usage_mutex.tag_dirty();
}
static void add_node_tag(bNodeTree *ntree, bNode *node, const eNodeTreeChangedFlag flag)
{
add_tree_tag(ntree, flag);
node->runtime->changed_flag |= flag;
}
static void add_socket_tag(bNodeTree *ntree, bNodeSocket *socket, const eNodeTreeChangedFlag flag)
{
add_tree_tag(ntree, flag);
socket->runtime->changed_flag |= flag;
}
namespace blender::bke {
/**
* Common datatype priorities, works for compositor, shader and texture nodes alike
* defines priority of datatype connection based on output type (to):
* `< 0`: never connect these types.
* `>= 0`: priority of connection (higher values chosen first).
*/
static int get_internal_link_type_priority(const bNodeSocketType *from, const bNodeSocketType *to)
{
switch (to->type) {
case SOCK_RGBA:
switch (from->type) {
case SOCK_RGBA:
return 4;
case SOCK_FLOAT:
return 3;
case SOCK_INT:
return 2;
case SOCK_BOOLEAN:
return 1;
}
return -1;
case SOCK_VECTOR:
switch (from->type) {
case SOCK_VECTOR:
return 4;
case SOCK_FLOAT:
return 3;
case SOCK_INT:
return 2;
case SOCK_BOOLEAN:
return 1;
}
return -1;
case SOCK_FLOAT:
switch (from->type) {
case SOCK_FLOAT:
return 5;
case SOCK_INT:
return 4;
case SOCK_BOOLEAN:
return 3;
case SOCK_RGBA:
return 2;
case SOCK_VECTOR:
return 1;
}
return -1;
case SOCK_INT:
switch (from->type) {
case SOCK_INT:
return 5;
case SOCK_FLOAT:
return 4;
case SOCK_BOOLEAN:
return 3;
case SOCK_RGBA:
return 2;
case SOCK_VECTOR:
return 1;
}
return -1;
case SOCK_BOOLEAN:
switch (from->type) {
case SOCK_BOOLEAN:
return 5;
case SOCK_INT:
return 4;
case SOCK_FLOAT:
return 3;
case SOCK_RGBA:
return 2;
case SOCK_VECTOR:
return 1;
}
return -1;
case SOCK_ROTATION:
switch (from->type) {
case SOCK_ROTATION:
return 3;
case SOCK_VECTOR:
return 2;
case SOCK_FLOAT:
return 1;
}
return -1;
}
/* The rest of the socket types only allow an internal link if both the input and output socket
* have the same type. If the sockets are custom, we check the idname instead. */
if (to->type == from->type && (to->type != SOCK_CUSTOM || to->idname == from->idname)) {
return 1;
}
return -1;
}
/* Check both the tree's own tags and the interface tags. */
static bool is_tree_changed(const bNodeTree &tree)
{
return tree.runtime->changed_flag != NTREE_CHANGED_NOTHING || tree.tree_interface.is_changed();
}
using TreeNodePair = std::pair<bNodeTree *, bNode *>;
using ObjectModifierPair = std::pair<Object *, ModifierData *>;
using NodeSocketPair = std::pair<bNode *, bNodeSocket *>;
/**
* Cache common data about node trees from the #Main database that is expensive to retrieve on
* demand every time.
*/
struct NodeTreeRelations {
private:
Main *bmain_;
std::optional<Vector<bNodeTree *>> all_trees_;
std::optional<MultiValueMap<bNodeTree *, TreeNodePair>> group_node_users_;
std::optional<MultiValueMap<bNodeTree *, ObjectModifierPair>> modifiers_users_;
public:
NodeTreeRelations(Main *bmain) : bmain_(bmain) {}
void ensure_all_trees()
{
if (all_trees_.has_value()) {
return;
}
all_trees_.emplace();
if (bmain_ == nullptr) {
return;
}
FOREACH_NODETREE_BEGIN (bmain_, ntree, id) {
all_trees_->append(ntree);
}
FOREACH_NODETREE_END;
}
void ensure_group_node_users()
{
if (group_node_users_.has_value()) {
return;
}
group_node_users_.emplace();
if (bmain_ == nullptr) {
return;
}
this->ensure_all_trees();
for (bNodeTree *ntree : *all_trees_) {
for (bNode *node : ntree->all_nodes()) {
if (node->id == nullptr) {
continue;
}
ID *id = node->id;
if (GS(id->name) == ID_NT) {
bNodeTree *group = (bNodeTree *)id;
group_node_users_->add(group, {ntree, node});
}
}
}
}
void ensure_modifier_users()
{
if (modifiers_users_.has_value()) {
return;
}
modifiers_users_.emplace();
if (bmain_ == nullptr) {
return;
}
LISTBASE_FOREACH (Object *, object, &bmain_->objects) {
LISTBASE_FOREACH (ModifierData *, md, &object->modifiers) {
if (md->type == eModifierType_Nodes) {
NodesModifierData *nmd = (NodesModifierData *)md;
if (nmd->node_group != nullptr) {
modifiers_users_->add(nmd->node_group, {object, md});
}
}
}
}
}
Span<ObjectModifierPair> get_modifier_users(bNodeTree *ntree)
{
BLI_assert(modifiers_users_.has_value());
return modifiers_users_->lookup(ntree);
}
Span<TreeNodePair> get_group_node_users(bNodeTree *ntree)
{
BLI_assert(group_node_users_.has_value());
return group_node_users_->lookup(ntree);
}
};
struct TreeUpdateResult {
bool interface_changed = false;
bool output_changed = false;
};
class NodeTreeMainUpdater {
private:
Main *bmain_;
const NodeTreeUpdateExtraParams &params_;
Map<bNodeTree *, TreeUpdateResult> update_result_by_tree_;
NodeTreeRelations relations_;
bool needs_relations_update_ = false;
public:
NodeTreeMainUpdater(Main *bmain, const NodeTreeUpdateExtraParams &params)
: bmain_(bmain), params_(params), relations_(bmain)
{
}
void update()
{
Vector<bNodeTree *> changed_ntrees;
FOREACH_NODETREE_BEGIN (bmain_, ntree, id) {
if (is_tree_changed(*ntree)) {
changed_ntrees.append(ntree);
}
}
FOREACH_NODETREE_END;
this->update_rooted(changed_ntrees);
}
void update_rooted(Span<bNodeTree *> root_ntrees)
{
if (root_ntrees.is_empty()) {
return;
}
bool is_single_tree_update = false;
if (root_ntrees.size() == 1) {
bNodeTree *ntree = root_ntrees[0];
if (!is_tree_changed(*ntree)) {
return;
}
const TreeUpdateResult result = this->update_tree(*ntree);
update_result_by_tree_.add_new(ntree, result);
if (!result.interface_changed && !result.output_changed) {
is_single_tree_update = true;
}
}
if (!is_single_tree_update) {
Vector<bNodeTree *> ntrees_in_order = this->get_tree_update_order(root_ntrees);
for (bNodeTree *ntree : ntrees_in_order) {
if (!is_tree_changed(*ntree)) {
continue;
}
if (!update_result_by_tree_.contains(ntree)) {
const TreeUpdateResult result = this->update_tree(*ntree);
update_result_by_tree_.add_new(ntree, result);
}
const TreeUpdateResult result = update_result_by_tree_.lookup(ntree);
Span<TreeNodePair> dependent_trees = relations_.get_group_node_users(ntree);
if (result.output_changed) {
for (const TreeNodePair &pair : dependent_trees) {
add_node_tag(pair.first, pair.second, NTREE_CHANGED_NODE_OUTPUT);
}
}
if (result.interface_changed) {
for (const TreeNodePair &pair : dependent_trees) {
add_node_tag(pair.first, pair.second, NTREE_CHANGED_NODE_PROPERTY);
}
}
}
}
for (const auto item : update_result_by_tree_.items()) {
bNodeTree *ntree = item.key;
const TreeUpdateResult &result = item.value;
this->reset_changed_flags(*ntree);
if (result.interface_changed) {
if (ntree->type == NTREE_GEOMETRY) {
relations_.ensure_modifier_users();
for (const ObjectModifierPair &pair : relations_.get_modifier_users(ntree)) {
Object *object = pair.first;
ModifierData *md = pair.second;
if (md->type == eModifierType_Nodes) {
MOD_nodes_update_interface(object, (NodesModifierData *)md);
}
}
}
}
if (result.output_changed) {
ntree->runtime->geometry_nodes_lazy_function_graph_info.reset();
}
ID *owner_id = BKE_id_owner_get(&ntree->id);
ID &owner_or_self_id = owner_id ? *owner_id : ntree->id;
if (params_.tree_changed_fn) {
params_.tree_changed_fn(*ntree, owner_or_self_id);
}
if (params_.tree_output_changed_fn && result.output_changed) {
params_.tree_output_changed_fn(*ntree, owner_or_self_id);
}
}
if (needs_relations_update_) {
if (bmain_) {
DEG_relations_tag_update(bmain_);
}
}
}
private:
enum class ToposortMark {
None,
Temporary,
Permanent,
};
using ToposortMarkMap = Map<bNodeTree *, ToposortMark>;
/**
* Finds all trees that depend on the given trees (through node groups). Then those trees are
* ordered such that all trees used by one tree come before it.
*/
Vector<bNodeTree *> get_tree_update_order(Span<bNodeTree *> root_ntrees)
{
relations_.ensure_group_node_users();
Set<bNodeTree *> trees_to_update = get_trees_to_update(root_ntrees);
Vector<bNodeTree *> sorted_ntrees;
ToposortMarkMap marks;
for (bNodeTree *ntree : trees_to_update) {
marks.add_new(ntree, ToposortMark::None);
}
for (bNodeTree *ntree : trees_to_update) {
if (marks.lookup(ntree) == ToposortMark::None) {
const bool cycle_detected = !this->get_tree_update_order__visit_recursive(
ntree, marks, sorted_ntrees);
/* This should be prevented by higher level operators. */
BLI_assert(!cycle_detected);
UNUSED_VARS_NDEBUG(cycle_detected);
}
}
std::reverse(sorted_ntrees.begin(), sorted_ntrees.end());
return sorted_ntrees;
}
bool get_tree_update_order__visit_recursive(bNodeTree *ntree,
ToposortMarkMap &marks,
Vector<bNodeTree *> &sorted_ntrees)
{
ToposortMark &mark = marks.lookup(ntree);
if (mark == ToposortMark::Permanent) {
return true;
}
if (mark == ToposortMark::Temporary) {
/* There is a dependency cycle. */
return false;
}
mark = ToposortMark::Temporary;
for (const TreeNodePair &pair : relations_.get_group_node_users(ntree)) {
this->get_tree_update_order__visit_recursive(pair.first, marks, sorted_ntrees);
}
sorted_ntrees.append(ntree);
mark = ToposortMark::Permanent;
return true;
}
Set<bNodeTree *> get_trees_to_update(Span<bNodeTree *> root_ntrees)
{
relations_.ensure_group_node_users();
Set<bNodeTree *> reachable_trees;
VectorSet<bNodeTree *> trees_to_check = root_ntrees;
while (!trees_to_check.is_empty()) {
bNodeTree *ntree = trees_to_check.pop();
if (reachable_trees.add(ntree)) {
for (const TreeNodePair &pair : relations_.get_group_node_users(ntree)) {
trees_to_check.add(pair.first);
}
}
}
return reachable_trees;
}
TreeUpdateResult update_tree(bNodeTree &ntree)
{
TreeUpdateResult result;
ntree.runtime->link_errors_by_target_node.clear();
this->update_socket_link_and_use(ntree);
this->update_individual_nodes(ntree);
this->update_internal_links(ntree);
this->update_generic_callback(ntree);
this->remove_unused_previews_when_necessary(ntree);
this->make_node_previews_dirty(ntree);
this->propagate_runtime_flags(ntree);
if (ntree.type == NTREE_GEOMETRY) {
if (this->propagate_enum_definitions(ntree)) {
result.interface_changed = true;
}
if (node_field_inferencing::update_field_inferencing(ntree)) {
result.interface_changed = true;
}
this->update_from_field_inference(ntree);
if (node_tree_reference_lifetimes::analyse_reference_lifetimes(ntree)) {
result.interface_changed = true;
}
if (nodes::gizmos::update_tree_gizmo_propagation(ntree)) {
result.interface_changed = true;
}
this->update_socket_shapes(ntree);
this->update_eval_dependencies(ntree);
}
result.output_changed = this->check_if_output_changed(ntree);
this->update_socket_link_and_use(ntree);
this->update_link_validation(ntree);
if (this->update_nested_node_refs(ntree)) {
result.interface_changed = true;
}
if (ntree.type == NTREE_TEXTURE) {
ntreeTexCheckCyclics(&ntree);
}
if (ntree.tree_interface.is_changed()) {
result.interface_changed = true;
}
#ifndef NDEBUG
/* Check the uniqueness of node identifiers. */
Set<int32_t> node_identifiers;
const Span<const bNode *> nodes = ntree.all_nodes();
for (const int i : nodes.index_range()) {
const bNode &node = *nodes[i];
BLI_assert(node.identifier > 0);
node_identifiers.add_new(node.identifier);
BLI_assert(node.runtime->index_in_tree == i);
}
#endif
return result;
}
void update_socket_link_and_use(bNodeTree &tree)
{
tree.ensure_topology_cache();
for (bNodeSocket *socket : tree.all_input_sockets()) {
if (socket->directly_linked_links().is_empty()) {
socket->link = nullptr;
}
else {
socket->link = socket->directly_linked_links()[0];
}
}
this->update_socket_used_tags(tree);
}
void update_socket_used_tags(bNodeTree &tree)
{
tree.ensure_topology_cache();
for (bNodeSocket *socket : tree.all_sockets()) {
const bool socket_is_linked = !socket->directly_linked_links().is_empty();
SET_FLAG_FROM_TEST(socket->flag, socket_is_linked, SOCK_IS_LINKED);
}
}
void update_individual_nodes(bNodeTree &ntree)
{
for (bNode *node : ntree.all_nodes()) {
bke::node_declaration_ensure(&ntree, node);
if (this->should_update_individual_node(ntree, *node)) {
bke::bNodeType &ntype = *node->typeinfo;
if (ntype.group_update_func) {
ntype.group_update_func(&ntree, node);
}
if (ntype.declare) {
/* Should have been created when the node was registered. */
BLI_assert(ntype.static_declaration != nullptr);
if (ntype.static_declaration->is_context_dependent) {
nodes::update_node_declaration_and_sockets(ntree, *node);
}
}
else if (node->is_undefined()) {
/* If a node has become undefined (it generally was unregistered from Python), it does
* not have a declaration anymore. */
delete node->runtime->declaration;
node->runtime->declaration = nullptr;
}
if (ntype.updatefunc) {
ntype.updatefunc(&ntree, node);
}
}
}
}
bool should_update_individual_node(const bNodeTree &ntree, const bNode &node)
{
if (ntree.runtime->changed_flag & NTREE_CHANGED_ANY) {
return true;
}
if (node.runtime->changed_flag & NTREE_CHANGED_NODE_PROPERTY) {
return true;
}
if (ntree.runtime->changed_flag & NTREE_CHANGED_LINK) {
/* Currently we have no way to tell if a node needs to be updated when a link changed. */
return true;
}
if (ntree.tree_interface.is_changed()) {
if (node.is_group_input() || node.is_group_output()) {
return true;
}
}
/* Check paired simulation zone nodes. */
if (all_zone_input_node_types().contains(node.type_legacy)) {
const bNodeZoneType &zone_type = *zone_type_by_node_type(node.type_legacy);
if (const bNode *output_node = zone_type.get_corresponding_output(ntree, node)) {
if (output_node->runtime->changed_flag & NTREE_CHANGED_NODE_PROPERTY) {
return true;
}
}
}
return false;
}
struct InternalLink {
bNodeSocket *from;
bNodeSocket *to;
int multi_input_sort_id = 0;
BLI_STRUCT_EQUALITY_OPERATORS_3(InternalLink, from, to, multi_input_sort_id);
};
const bNodeLink *first_non_dangling_link(const bNodeTree & /*ntree*/,
const Span<const bNodeLink *> links) const
{
for (const bNodeLink *link : links) {
if (!link->fromnode->is_dangling_reroute()) {
return link;
}
}
return nullptr;
}
void update_internal_links(bNodeTree &ntree)
{
bke::node_tree_runtime::AllowUsingOutdatedInfo allow_outdated_info{ntree};
ntree.ensure_topology_cache();
for (bNode *node : ntree.all_nodes()) {
if (!this->should_update_individual_node(ntree, *node)) {
continue;
}
/* Find all expected internal links. */
Vector<InternalLink> expected_internal_links;
for (const bNodeSocket *output_socket : node->output_sockets()) {
if (!output_socket->is_available()) {
continue;
}
if (!output_socket->is_directly_linked()) {
continue;
}
if (output_socket->flag & SOCK_NO_INTERNAL_LINK) {
continue;
}
const bNodeSocket *input_socket = this->find_internally_linked_input(output_socket);
if (input_socket == nullptr) {
continue;
}
const Span<const bNodeLink *> connected_links = input_socket->directly_linked_links();
const bNodeLink *connected_link = first_non_dangling_link(ntree, connected_links);
const int index = connected_link ? connected_link->multi_input_sort_id :
std::max<int>(0, connected_links.size() - 1);
expected_internal_links.append(InternalLink{const_cast<bNodeSocket *>(input_socket),
const_cast<bNodeSocket *>(output_socket),
index});
}
/* Rebuilt internal links if they have changed. */
if (node->runtime->internal_links.size() != expected_internal_links.size()) {
this->update_internal_links_in_node(ntree, *node, expected_internal_links);
continue;
}
const bool all_expected_internal_links_exist = std::all_of(
node->runtime->internal_links.begin(),
node->runtime->internal_links.end(),
[&](const bNodeLink &link) {
const InternalLink internal_link{link.fromsock, link.tosock, link.multi_input_sort_id};
return expected_internal_links.as_span().contains(internal_link);
});
if (all_expected_internal_links_exist) {
continue;
}
this->update_internal_links_in_node(ntree, *node, expected_internal_links);
}
}
const bNodeSocket *find_internally_linked_input(const bNodeSocket *output_socket)
{
const bNodeSocket *selected_socket = nullptr;
int selected_priority = -1;
bool selected_is_linked = false;
const bNode &node = output_socket->owner_node();
if (node.is_type("GeometryNodeBake")) {
/* Internal links should always map corresponding input and output sockets. */
return &node.input_by_identifier(output_socket->identifier);
}
if (node.is_type("GeometryNodeCaptureAttribute")) {
return &node.input_socket(output_socket->index());
}
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (!input_socket->is_available()) {
continue;
}
if (input_socket->flag & SOCK_NO_INTERNAL_LINK) {
continue;
}
const int priority = get_internal_link_type_priority(input_socket->typeinfo,
output_socket->typeinfo);
if (priority < 0) {
continue;
}
const bool is_linked = input_socket->is_directly_linked();
const bool is_preferred = priority > selected_priority || (is_linked && !selected_is_linked);
if (!is_preferred) {
continue;
}
selected_socket = input_socket;
selected_priority = priority;
selected_is_linked = is_linked;
}
return selected_socket;
}
void update_internal_links_in_node(bNodeTree &ntree,
bNode &node,
Span<InternalLink> internal_links)
{
node.runtime->internal_links.clear();
node.runtime->internal_links.reserve(internal_links.size());
for (const InternalLink &internal_link : internal_links) {
bNodeLink link{};
link.fromnode = &node;
link.fromsock = internal_link.from;
link.tonode = &node;
link.tosock = internal_link.to;
link.multi_input_sort_id = internal_link.multi_input_sort_id;
link.flag |= NODE_LINK_VALID;
node.runtime->internal_links.append(link);
}
BKE_ntree_update_tag_node_internal_link(&ntree, &node);
}
void update_generic_callback(bNodeTree &ntree)
{
if (ntree.typeinfo->update == nullptr) {
return;
}
ntree.typeinfo->update(&ntree);
}
void remove_unused_previews_when_necessary(bNodeTree &ntree)
{
/* Don't trigger preview removal when only those flags are set. */
const uint32_t allowed_flags = NTREE_CHANGED_LINK | NTREE_CHANGED_SOCKET_PROPERTY |
NTREE_CHANGED_NODE_PROPERTY | NTREE_CHANGED_NODE_OUTPUT;
if ((ntree.runtime->changed_flag & allowed_flags) == ntree.runtime->changed_flag) {
return;
}
blender::bke::node_preview_remove_unused(&ntree);
}
void make_node_previews_dirty(bNodeTree &ntree)
{
ntree.runtime->previews_refresh_state++;
for (bNode *node : ntree.all_nodes()) {
if (!node->is_group()) {
continue;
}
if (bNodeTree *nested_tree = reinterpret_cast<bNodeTree *>(node->id)) {
this->make_node_previews_dirty(*nested_tree);
}
}
}
void propagate_runtime_flags(const bNodeTree &ntree)
{
ntree.ensure_topology_cache();
ntree.runtime->runtime_flag = 0;
for (const bNode *group_node : ntree.group_nodes()) {
const bNodeTree *group = reinterpret_cast<bNodeTree *>(group_node->id);
if (group != nullptr) {
ntree.runtime->runtime_flag |= group->runtime->runtime_flag;
}
}
if (ntree.type == NTREE_SHADER) {
/* Check if the tree itself has an animated image. */
for (const StringRefNull idname : {"ShaderNodeTexImage", "ShaderNodeTexEnvironment"}) {
for (const bNode *node : ntree.nodes_by_type(idname)) {
Image *image = reinterpret_cast<Image *>(node->id);
if (image != nullptr && BKE_image_is_animated(image)) {
ntree.runtime->runtime_flag |= NTREE_RUNTIME_FLAG_HAS_IMAGE_ANIMATION;
break;
}
}
}
/* Check if the tree has a material output. */
for (const StringRefNull idname : {"ShaderNodeOutputMaterial",
"ShaderNodeOutputLight",
"ShaderNodeOutputWorld",
"ShaderNodeOutputAOV"})
{
const Span<const bNode *> nodes = ntree.nodes_by_type(idname);
if (!nodes.is_empty()) {
ntree.runtime->runtime_flag |= NTREE_RUNTIME_FLAG_HAS_MATERIAL_OUTPUT;
break;
}
}
}
if (ntree.type == NTREE_GEOMETRY) {
/* Check if there is a simulation zone. */
if (!ntree.nodes_by_type("GeometryNodeSimulationOutput").is_empty()) {
ntree.runtime->runtime_flag |= NTREE_RUNTIME_FLAG_HAS_SIMULATION_ZONE;
}
}
}
void update_from_field_inference(bNodeTree &ntree)
{
/* Automatically tag a bake item as attribute when the input is a field. The flag should not be
* removed automatically even when the field input is disconnected because the baked data may
* still contain attribute data instead of a single value. */
const Span<bke::FieldSocketState> field_states = ntree.runtime->field_states;
for (bNode *node : ntree.nodes_by_type("GeometryNodeBake")) {
NodeGeometryBake &storage = *static_cast<NodeGeometryBake *>(node->storage);
for (const int i : IndexRange(storage.items_num)) {
const bNodeSocket &socket = node->input_socket(i);
NodeGeometryBakeItem &item = storage.items[i];
if (field_states[socket.index_in_tree()] == FieldSocketState::IsField) {
item.flag |= GEO_NODE_BAKE_ITEM_IS_ATTRIBUTE;
}
}
}
}
void update_socket_shapes(bNodeTree &ntree)
{
ntree.ensure_topology_cache();
const Span<bke::FieldSocketState> field_states = ntree.runtime->field_states;
for (bNodeSocket *socket : ntree.all_sockets()) {
switch (field_states[socket->index_in_tree()]) {
case bke::FieldSocketState::RequiresSingle:
socket->display_shape = SOCK_DISPLAY_SHAPE_CIRCLE;
break;
case bke::FieldSocketState::CanBeField:
socket->display_shape = SOCK_DISPLAY_SHAPE_DIAMOND_DOT;
break;
case bke::FieldSocketState::IsField:
socket->display_shape = SOCK_DISPLAY_SHAPE_DIAMOND;
break;
}
}
}
void update_eval_dependencies(bNodeTree &ntree)
{
ntree.ensure_topology_cache();
nodes::GeometryNodesEvalDependencies new_deps =
nodes::gather_geometry_nodes_eval_dependencies_with_cache(ntree);
/* Check if the dependencies have changed. */
if (!ntree.runtime->geometry_nodes_eval_dependencies ||
new_deps != *ntree.runtime->geometry_nodes_eval_dependencies)
{
needs_relations_update_ = true;
ntree.runtime->geometry_nodes_eval_dependencies =
std::make_unique<nodes::GeometryNodesEvalDependencies>(std::move(new_deps));
}
}
bool propagate_enum_definitions(bNodeTree &ntree)
{
ntree.ensure_interface_cache();
/* Propagation from right to left to determine which enum
* definition to use for menu sockets. */
for (bNode *node : ntree.toposort_right_to_left()) {
const bool node_updated = this->should_update_individual_node(ntree, *node);
if (node->is_type("GeometryNodeMenuSwitch")) {
/* Generate new enum items when the node has changed, otherwise keep existing items. */
if (node_updated) {
const NodeMenuSwitch &storage = *static_cast<NodeMenuSwitch *>(node->storage);
const RuntimeNodeEnumItems *enum_items = this->create_runtime_enum_items(
storage.enum_definition);
bNodeSocket &input = *node->input_sockets()[0];
BLI_assert(input.is_available() && input.type == SOCK_MENU);
this->set_enum_ptr(*input.default_value_typed<bNodeSocketValueMenu>(), enum_items);
/* Remove initial user. */
enum_items->remove_user_and_delete_if_last();
}
continue;
}
else {
/* Clear current enum references. */
for (bNodeSocket *socket : node->input_sockets()) {
if (socket->is_available() && socket->type == SOCK_MENU) {
clear_enum_reference(*socket);
}
}
for (bNodeSocket *socket : node->output_sockets()) {
if (socket->is_available() && socket->type == SOCK_MENU) {
clear_enum_reference(*socket);
}
}
}
/* Propagate enum references from output links. */
for (bNodeSocket *output : node->output_sockets()) {
if (!output->is_available() || output->type != SOCK_MENU) {
continue;
}
for (const bNodeSocket *input : output->directly_linked_sockets()) {
if (!input->is_available() || input->type != SOCK_MENU) {
continue;
}
this->update_socket_enum_definition(*output->default_value_typed<bNodeSocketValueMenu>(),
*input->default_value_typed<bNodeSocketValueMenu>());
}
}
if (node->is_group()) {
/* Node groups expose internal enum definitions. */
if (node->id == nullptr) {
continue;
}
const bNodeTree *group_tree = reinterpret_cast<bNodeTree *>(node->id);
group_tree->ensure_interface_cache();
for (const int socket_i : group_tree->interface_inputs().index_range()) {
bNodeSocket &input = *node->input_sockets()[socket_i];
const bNodeTreeInterfaceSocket &iosocket = *group_tree->interface_inputs()[socket_i];
BLI_assert(STREQ(input.identifier, iosocket.identifier));
if (input.is_available() && input.type == SOCK_MENU) {
BLI_assert(STREQ(iosocket.socket_type, "NodeSocketMenu"));
this->update_socket_enum_definition(
*input.default_value_typed<bNodeSocketValueMenu>(),
*static_cast<bNodeSocketValueMenu *>(iosocket.socket_data));
}
}
}
else if (node->is_type("GeometryNodeMenuSwitch")) {
/* First input is always the node's own menu, propagate only to the enum case inputs. */
const bNodeSocket *output = node->output_sockets().first();
for (bNodeSocket *input : node->input_sockets().drop_front(1)) {
if (input->is_available() && input->type == SOCK_MENU) {
this->update_socket_enum_definition(
*input->default_value_typed<bNodeSocketValueMenu>(),
*output->default_value_typed<bNodeSocketValueMenu>());
}
}
}
else if (node->is_type("GeometryNodeForeachGeometryElementInput")) {
/* Propagate menu from element inputs to field inputs. */
BLI_assert(node->input_sockets().size() == node->output_sockets().size());
/* Inputs Geometry, Selection and outputs Index, Element are ignored. */
const IndexRange sockets = node->input_sockets().index_range().drop_front(2);
for (const int socket_i : sockets) {
bNodeSocket *input = node->input_sockets()[socket_i];
bNodeSocket *output = node->output_sockets()[socket_i];
if (input->is_available() && input->type == SOCK_MENU && output->is_available() &&
output->type == SOCK_MENU)
{
this->update_socket_enum_definition(
*input->default_value_typed<bNodeSocketValueMenu>(),
*output->default_value_typed<bNodeSocketValueMenu>());
}
}
}
else {
/* Propagate over internal relations. */
/* XXX Placeholder implementation just propagates all outputs
* to all inputs for built-in nodes This could perhaps use
* input/output relations to handle propagation generically? */
for (bNodeSocket *input : node->input_sockets()) {
if (input->is_available() && input->type == SOCK_MENU) {
for (const bNodeSocket *output : node->output_sockets()) {
if (output->is_available() && output->type == SOCK_MENU) {
this->update_socket_enum_definition(
*input->default_value_typed<bNodeSocketValueMenu>(),
*output->default_value_typed<bNodeSocketValueMenu>());
}
}
}
}
}
}
/* Find conflicts between on corresponding menu sockets on different group input nodes. */
const Span<bNode *> group_input_nodes = ntree.group_input_nodes();
for (const int interface_input_i : ntree.interface_inputs().index_range()) {
const bNodeTreeInterfaceSocket &interface_socket =
*ntree.interface_inputs()[interface_input_i];
if (interface_socket.socket_type != StringRef("NodeSocketMenu")) {
continue;
}
const RuntimeNodeEnumItems *found_enum_items = nullptr;
bool found_conflict = false;
for (bNode *input_node : group_input_nodes) {
const bNodeSocket &socket = input_node->output_socket(interface_input_i);
const auto &socket_value = *socket.default_value_typed<bNodeSocketValueMenu>();
if (socket_value.has_conflict()) {
found_conflict = true;
break;
}
if (found_enum_items == nullptr) {
found_enum_items = socket_value.enum_items;
}
else if (socket_value.enum_items != nullptr) {
if (found_enum_items != socket_value.enum_items) {
found_conflict = true;
break;
}
}
}
if (found_conflict) {
/* Make sure that all group input sockets know that there is a socket. */
for (bNode *input_node : group_input_nodes) {
bNodeSocket &socket = input_node->output_socket(interface_input_i);
auto &socket_value = *socket.default_value_typed<bNodeSocketValueMenu>();
if (socket_value.enum_items) {
socket_value.enum_items->remove_user_and_delete_if_last();
socket_value.enum_items = nullptr;
}
socket_value.runtime_flag |= NodeSocketValueMenuRuntimeFlag::NODE_MENU_ITEMS_CONFLICT;
}
}
else if (found_enum_items != nullptr) {
/* Make sure all corresponding menu sockets have the same menu reference. */
for (bNode *input_node : group_input_nodes) {
bNodeSocket &socket = input_node->output_socket(interface_input_i);
auto &socket_value = *socket.default_value_typed<bNodeSocketValueMenu>();
if (socket_value.enum_items == nullptr) {
found_enum_items->add_user();
socket_value.enum_items = found_enum_items;
}
}
}
}
/* Build list of new enum items for the node tree interface. */
Vector<bNodeSocketValueMenu> interface_enum_items(ntree.interface_inputs().size(), {0});
for (const bNode *group_input_node : ntree.group_input_nodes()) {
for (const int socket_i : ntree.interface_inputs().index_range()) {
const bNodeSocket &output = *group_input_node->output_sockets()[socket_i];
if (output.is_available() && output.type == SOCK_MENU) {
this->update_socket_enum_definition(interface_enum_items[socket_i],
*output.default_value_typed<bNodeSocketValueMenu>());
}
}
}
/* Move enum items to the interface and detect if anything changed. */
bool changed = false;
for (const int socket_i : ntree.interface_inputs().index_range()) {
bNodeTreeInterfaceSocket &iosocket = *ntree.interface_inputs()[socket_i];
if (STREQ(iosocket.socket_type, "NodeSocketMenu")) {
bNodeSocketValueMenu &dst = *static_cast<bNodeSocketValueMenu *>(iosocket.socket_data);
const bNodeSocketValueMenu &src = interface_enum_items[socket_i];
if (dst.enum_items != src.enum_items || dst.has_conflict() != src.has_conflict()) {
changed = true;
if (dst.enum_items) {
dst.enum_items->remove_user_and_delete_if_last();
}
/* Items are moved, no need to change user count. */
dst.enum_items = src.enum_items;
SET_FLAG_FROM_TEST(dst.runtime_flag, src.has_conflict(), NODE_MENU_ITEMS_CONFLICT);
}
}
}
return changed;
}
/**
* Make a runtime copy of the DNA enum items.
* The runtime items list is shared by sockets.
*/
const RuntimeNodeEnumItems *create_runtime_enum_items(const NodeEnumDefinition &enum_def)
{
RuntimeNodeEnumItems *enum_items = new RuntimeNodeEnumItems();
enum_items->items.reinitialize(enum_def.items_num);
for (const int i : enum_def.items().index_range()) {
const NodeEnumItem &src = enum_def.items()[i];
RuntimeNodeEnumItem &dst = enum_items->items[i];
dst.identifier = src.identifier;
dst.name = src.name ? src.name : "";
dst.description = src.description ? src.description : "";
}
return enum_items;
}
void clear_enum_reference(bNodeSocket &socket)
{
BLI_assert(socket.is_available() && socket.type == SOCK_MENU);
bNodeSocketValueMenu &default_value = *socket.default_value_typed<bNodeSocketValueMenu>();
this->reset_enum_ptr(default_value);
default_value.runtime_flag &= ~NODE_MENU_ITEMS_CONFLICT;
}
void update_socket_enum_definition(bNodeSocketValueMenu &dst, const bNodeSocketValueMenu &src)
{
if (dst.has_conflict()) {
/* Target enum already has a conflict. */
BLI_assert(dst.enum_items == nullptr);
return;
}
if (src.has_conflict()) {
/* Target conflict if any source enum has a conflict. */
this->reset_enum_ptr(dst);
dst.runtime_flag |= NODE_MENU_ITEMS_CONFLICT;
}
else if (!dst.enum_items) {
/* First connection, set the reference. */
this->set_enum_ptr(dst, src.enum_items);
}
else if (src.enum_items && dst.enum_items != src.enum_items) {
/* Error if enum ref does not match other connections. */
this->reset_enum_ptr(dst);
dst.runtime_flag |= NODE_MENU_ITEMS_CONFLICT;
}
}
void reset_enum_ptr(bNodeSocketValueMenu &dst)
{
if (dst.enum_items) {
dst.enum_items->remove_user_and_delete_if_last();
dst.enum_items = nullptr;
}
}
void set_enum_ptr(bNodeSocketValueMenu &dst, const RuntimeNodeEnumItems *enum_items)
{
if (dst.enum_items) {
dst.enum_items->remove_user_and_delete_if_last();
dst.enum_items = nullptr;
}
if (enum_items) {
enum_items->add_user();
dst.enum_items = enum_items;
}
}
void update_link_validation(bNodeTree &ntree)
{
/* Tests if enum references are undefined. */
const auto is_invalid_enum_ref = [](const bNodeSocket &socket) -> bool {
if (socket.type == SOCK_MENU) {
return socket.default_value_typed<bNodeSocketValueMenu>()->enum_items == nullptr;
}
return false;
};
LISTBASE_FOREACH (bNodeLink *, link, &ntree.links) {
link->flag |= NODE_LINK_VALID;
if (!link->fromsock->is_available() || !link->tosock->is_available()) {
link->flag &= ~NODE_LINK_VALID;
continue;
}
if (is_invalid_enum_ref(*link->fromsock) || is_invalid_enum_ref(*link->tosock)) {
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors_by_target_node.add(
link->tonode->identifier,
NodeLinkError{TIP_("Use node groups to reuse the same menu multiple times")});
continue;
}
if (ntree.type == NTREE_GEOMETRY) {
const Span<FieldSocketState> field_states = ntree.runtime->field_states;
if (field_states[link->fromsock->index_in_tree()] == FieldSocketState::IsField &&
field_states[link->tosock->index_in_tree()] != FieldSocketState::IsField)
{
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors_by_target_node.add(
link->tonode->identifier,
NodeLinkError{TIP_("The node input does not support fields")});
continue;
}
}
const bNode &from_node = *link->fromnode;
const bNode &to_node = *link->tonode;
if (from_node.runtime->toposort_left_to_right_index >
to_node.runtime->toposort_left_to_right_index)
{
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors_by_target_node.add(
link->tonode->identifier,
NodeLinkError{TIP_("The links form a cycle which is not supported")});
continue;
}
if (ntree.typeinfo->validate_link) {
const eNodeSocketDatatype from_type = eNodeSocketDatatype(link->fromsock->type);
const eNodeSocketDatatype to_type = eNodeSocketDatatype(link->tosock->type);
if (!ntree.typeinfo->validate_link(from_type, to_type)) {
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors_by_target_node.add(
link->tonode->identifier,
NodeLinkError{fmt::format("{}: {} " BLI_STR_UTF8_BLACK_RIGHT_POINTING_SMALL_TRIANGLE
" {}",
TIP_("Conversion is not supported"),
TIP_(link->fromsock->typeinfo->label),
TIP_(link->tosock->typeinfo->label))});
continue;
}
}
}
}
bool check_if_output_changed(const bNodeTree &tree)
{
tree.ensure_topology_cache();
/* Compute a hash that represents the node topology connected to the output. This always has
* to be updated even if it is not used to detect changes right now. Otherwise
* #btree.runtime.output_topology_hash will go out of date. */
const Vector<const bNodeSocket *> tree_output_sockets = this->find_output_sockets(tree);
const uint32_t old_topology_hash = tree.runtime->output_topology_hash;
const uint32_t new_topology_hash = this->get_combined_socket_topology_hash(
tree, tree_output_sockets);
tree.runtime->output_topology_hash = new_topology_hash;
if (const AnimData *adt = BKE_animdata_from_id(&tree.id)) {
/* Drivers may copy values in the node tree around arbitrarily and may cause the output to
* change even if it wouldn't without drivers. Only some special drivers like `frame/5` can
* be used without causing updates all the time currently. In the future we could try to
* handle other drivers better as well.
* Note that this optimization only works in practice when the depsgraph didn't also get a
* copy-on-evaluation tag for the node tree (which happens when changing node properties). It
* does work in a few situations like adding reroutes and duplicating nodes though. */
LISTBASE_FOREACH (const FCurve *, fcurve, &adt->drivers) {
const ChannelDriver *driver = fcurve->driver;
const StringRef expression = driver->expression;
if (expression.startswith("frame")) {
const StringRef remaining_expression = expression.drop_known_prefix("frame");
if (remaining_expression.find_first_not_of(" */+-0123456789.") == StringRef::not_found) {
continue;
}
}
/* Unrecognized driver, assume that the output always changes. */
return true;
}
}
if (tree.runtime->changed_flag & NTREE_CHANGED_ANY) {
return true;
}
if (old_topology_hash != new_topology_hash) {
return true;
}
/* The topology hash can only be used when only topology-changing operations have been done.
*/
if (tree.runtime->changed_flag ==
(tree.runtime->changed_flag & (NTREE_CHANGED_LINK | NTREE_CHANGED_REMOVED_NODE)))
{
if (old_topology_hash == new_topology_hash) {
return false;
}
}
if (!this->check_if_socket_outputs_changed_based_on_flags(tree, tree_output_sockets)) {
return false;
}
return true;
}
Vector<const bNodeSocket *> find_output_sockets(const bNodeTree &tree)
{
Vector<const bNodeSocket *> sockets;
for (const bNode *node : tree.all_nodes()) {
if (!this->is_output_node(*node)) {
continue;
}
for (const bNodeSocket *socket : node->input_sockets()) {
if (!STREQ(socket->idname, "NodeSocketVirtual")) {
sockets.append(socket);
}
}
}
return sockets;
}
bool is_output_node(const bNode &node) const
{
if (node.typeinfo->nclass == NODE_CLASS_OUTPUT) {
return true;
}
if (node.is_group_output()) {
return true;
}
if (node.is_type("GeometryNodeWarning")) {
return true;
}
if (nodes::gizmos::is_builtin_gizmo_node(node)) {
return true;
}
/* Assume node groups without output sockets are outputs. */
if (node.is_group()) {
const bNodeTree *node_group = reinterpret_cast<const bNodeTree *>(node.id);
if (node_group != nullptr &&
node_group->runtime->runtime_flag & NTREE_RUNTIME_FLAG_HAS_MATERIAL_OUTPUT)
{
return true;
}
}
return false;
}
/**
* Computes a hash that changes when the node tree topology connected to an output node
* changes. Adding reroutes does not have an effect on the hash.
*/
uint32_t get_combined_socket_topology_hash(const bNodeTree &tree,
Span<const bNodeSocket *> sockets)
{
if (tree.has_available_link_cycle()) {
/* Return dummy value when the link has any cycles. The algorithm below could be improved
* to handle cycles more gracefully. */
return 0;
}
Array<uint32_t> hashes = this->get_socket_topology_hashes(tree, sockets);
uint32_t combined_hash = 0;
for (uint32_t hash : hashes) {
combined_hash = noise::hash(combined_hash, hash);
}
return combined_hash;
}
Array<uint32_t> get_socket_topology_hashes(const bNodeTree &tree,
const Span<const bNodeSocket *> sockets)
{
BLI_assert(!tree.has_available_link_cycle());
Array<std::optional<uint32_t>> hash_by_socket_id(tree.all_sockets().size());
Stack<const bNodeSocket *> sockets_to_check = sockets;
auto get_socket_ptr_hash = [&](const bNodeSocket &socket) {
const uint64_t socket_ptr = uintptr_t(&socket);
return noise::hash(socket_ptr, socket_ptr >> 32);
};
while (!sockets_to_check.is_empty()) {
const bNodeSocket &socket = *sockets_to_check.peek();
const bNode &node = socket.owner_node();
if (hash_by_socket_id[socket.index_in_tree()].has_value()) {
sockets_to_check.pop();
/* Socket is handled already. */
continue;
}
uint32_t socket_hash = 0;
if (socket.is_input()) {
/* For input sockets, first compute the hashes of all linked sockets. */
bool all_origins_computed = true;
bool get_value_from_origin = false;
for (const bNodeLink *link : socket.directly_linked_links()) {
if (link->is_muted()) {
continue;
}
if (!link->is_available()) {
continue;
}
const bNodeSocket &origin_socket = *link->fromsock;
const std::optional<uint32_t> origin_hash =
hash_by_socket_id[origin_socket.index_in_tree()];
if (origin_hash.has_value()) {
if (get_value_from_origin || socket.type != origin_socket.type) {
socket_hash = noise::hash(socket_hash, *origin_hash);
}
else {
/* Copy the socket hash because the link did not change it. */
socket_hash = *origin_hash;
}
get_value_from_origin = true;
}
else {
sockets_to_check.push(&origin_socket);
all_origins_computed = false;
}
}
if (!all_origins_computed) {
continue;
}
if (!get_value_from_origin) {
socket_hash = get_socket_ptr_hash(socket);
}
}
else {
bool all_available_inputs_computed = true;
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (input_socket->is_available()) {
if (!hash_by_socket_id[input_socket->index_in_tree()].has_value()) {
sockets_to_check.push(input_socket);
all_available_inputs_computed = false;
}
}
}
if (!all_available_inputs_computed) {
continue;
}
if (node.is_reroute()) {
socket_hash = *hash_by_socket_id[node.input_socket(0).index_in_tree()];
}
else if (node.is_muted()) {
const bNodeSocket *internal_input = socket.internal_link_input();
if (internal_input == nullptr) {
socket_hash = get_socket_ptr_hash(socket);
}
else {
if (internal_input->type == socket.type) {
socket_hash = *hash_by_socket_id[internal_input->index_in_tree()];
}
else {
socket_hash = get_socket_ptr_hash(socket);
}
}
}
else {
socket_hash = get_socket_ptr_hash(socket);
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (input_socket->is_available()) {
const uint32_t input_socket_hash = *hash_by_socket_id[input_socket->index_in_tree()];
socket_hash = noise::hash(socket_hash, input_socket_hash);
}
}
/* The Image Texture node has a special case. The behavior of the color output changes
* depending on whether the Alpha output is linked. */
if (node.is_type("ShaderNodeTexImage") && socket.index() == 0) {
BLI_assert(STREQ(socket.name, "Color"));
const bNodeSocket &alpha_socket = node.output_socket(1);
BLI_assert(STREQ(alpha_socket.name, "Alpha"));
if (alpha_socket.is_directly_linked()) {
socket_hash = noise::hash(socket_hash);
}
}
}
}
hash_by_socket_id[socket.index_in_tree()] = socket_hash;
/* Check that nothing has been pushed in the meantime. */
BLI_assert(sockets_to_check.peek() == &socket);
sockets_to_check.pop();
}
/* Create output array. */
Array<uint32_t> hashes(sockets.size());
for (const int i : sockets.index_range()) {
hashes[i] = *hash_by_socket_id[sockets[i]->index_in_tree()];
}
return hashes;
}
/**
* Returns true when any of the provided sockets changed its values. A change is detected by
* checking the #changed_flag on connected sockets and nodes.
*/
bool check_if_socket_outputs_changed_based_on_flags(const bNodeTree &tree,
Span<const bNodeSocket *> sockets)
{
/* Avoid visiting the same socket twice when multiple links point to the same socket. */
Array<bool> pushed_by_socket_id(tree.all_sockets().size(), false);
Stack<const bNodeSocket *> sockets_to_check = sockets;
for (const bNodeSocket *socket : sockets) {
pushed_by_socket_id[socket->index_in_tree()] = true;
}
while (!sockets_to_check.is_empty()) {
const bNodeSocket &socket = *sockets_to_check.pop();
const bNode &node = socket.owner_node();
if (socket.runtime->changed_flag != NTREE_CHANGED_NOTHING) {
return true;
}
if (node.runtime->changed_flag != NTREE_CHANGED_NOTHING) {
const bool only_unused_internal_link_changed = !node.is_muted() &&
node.runtime->changed_flag ==
NTREE_CHANGED_INTERNAL_LINK;
if (!only_unused_internal_link_changed) {
return true;
}
}
if (socket.is_input()) {
for (const bNodeSocket *origin_socket : socket.directly_linked_sockets()) {
bool &pushed = pushed_by_socket_id[origin_socket->index_in_tree()];
if (!pushed) {
sockets_to_check.push(origin_socket);
pushed = true;
}
}
}
else {
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (input_socket->is_available()) {
bool &pushed = pushed_by_socket_id[input_socket->index_in_tree()];
if (!pushed) {
sockets_to_check.push(input_socket);
pushed = true;
}
}
}
/* Zones may propagate changes from the input node to the output node even though there is
* no explicit link. */
switch (node.type_legacy) {
case GEO_NODE_REPEAT_OUTPUT:
case GEO_NODE_SIMULATION_OUTPUT:
case GEO_NODE_FOREACH_GEOMETRY_ELEMENT_OUTPUT: {
const bNodeTreeZones *zones = tree.zones();
if (!zones) {
break;
}
const bNodeTreeZone *zone = zones->get_zone_by_node(node.identifier);
if (!zone->input_node) {
break;
}
for (const bNodeSocket *input_socket : zone->input_node->input_sockets()) {
if (input_socket->is_available()) {
bool &pushed = pushed_by_socket_id[input_socket->index_in_tree()];
if (!pushed) {
sockets_to_check.push(input_socket);
pushed = true;
}
}
}
break;
}
}
/* The Normal node has a special case, because the value stored in the first output
* socket is used as input in the node. */
if ((node.is_type("ShaderNodeNormal") || node.is_type("CompositorNodeNormal")) &&
socket.index() == 1)
{
BLI_assert(STREQ(socket.name, "Dot"));
const bNodeSocket &normal_output = node.output_socket(0);
BLI_assert(STREQ(normal_output.name, "Normal"));
bool &pushed = pushed_by_socket_id[normal_output.index_in_tree()];
if (!pushed) {
sockets_to_check.push(&normal_output);
pushed = true;
}
}
}
}
return false;
}
/**
* Make sure that the #bNodeTree::nested_node_refs is up to date. It's supposed to contain a
* reference to all (nested) simulation zones.
*/
bool update_nested_node_refs(bNodeTree &ntree)
{
ntree.ensure_topology_cache();
/* Simplify lookup of old ids. */
Map<bNestedNodePath, int32_t> old_id_by_path;
Set<int32_t> old_ids;
for (const bNestedNodeRef &ref : ntree.nested_node_refs_span()) {
old_id_by_path.add(ref.path, ref.id);
old_ids.add(ref.id);
}
Vector<bNestedNodePath> nested_node_paths;
/* Don't forget nested node refs just because the linked file is not available right now. */
for (const bNestedNodePath &path : old_id_by_path.keys()) {
const bNode *node = ntree.node_by_id(path.node_id);
if (node && node->is_group() && node->id) {
if (node->id->tag & ID_TAG_MISSING) {
nested_node_paths.append(path);
}
}
}
if (ntree.type == NTREE_GEOMETRY) {
/* Create references for simulations and bake nodes in geometry nodes.
* Those are the nodes that we want to store settings for at a higher level. */
for (StringRefNull idname : {"GeometryNodeSimulationOutput", "GeometryNodeBake"}) {
for (const bNode *node : ntree.nodes_by_type(idname)) {
nested_node_paths.append({node->identifier, -1});
}
}
}
/* Propagate references to nested nodes in group nodes. */
for (const bNode *node : ntree.group_nodes()) {
const bNodeTree *group = reinterpret_cast<const bNodeTree *>(node->id);
if (group == nullptr) {
continue;
}
for (const int i : group->nested_node_refs_span().index_range()) {
const bNestedNodeRef &child_ref = group->nested_node_refs[i];
nested_node_paths.append({node->identifier, child_ref.id});
}
}
/* Used to generate new unique IDs if necessary. */
RandomNumberGenerator rng = RandomNumberGenerator::from_random_seed();
Map<int32_t, bNestedNodePath> new_path_by_id;
for (const bNestedNodePath &path : nested_node_paths) {
const int32_t old_id = old_id_by_path.lookup_default(path, -1);
if (old_id != -1) {
/* The same path existed before, it should keep the same ID as before. */
new_path_by_id.add(old_id, path);
continue;
}
int32_t new_id;
while (true) {
new_id = rng.get_int32(INT32_MAX);
if (!old_ids.contains(new_id) && !new_path_by_id.contains(new_id)) {
break;
}
}
/* The path is new, it should get a new ID that does not collide with any existing IDs. */
new_path_by_id.add(new_id, path);
}
/* Check if the old and new references are identical. */
if (!this->nested_node_refs_changed(ntree, new_path_by_id)) {
return false;
}
MEM_SAFE_FREE(ntree.nested_node_refs);
if (new_path_by_id.is_empty()) {
ntree.nested_node_refs_num = 0;
return true;
}
/* Allocate new array for the nested node references contained in the node tree. */
bNestedNodeRef *new_refs = static_cast<bNestedNodeRef *>(
MEM_malloc_arrayN(new_path_by_id.size(), sizeof(bNestedNodeRef), __func__));
int index = 0;
for (const auto item : new_path_by_id.items()) {
bNestedNodeRef &ref = new_refs[index];
ref.id = item.key;
ref.path = item.value;
index++;
}
ntree.nested_node_refs = new_refs;
ntree.nested_node_refs_num = new_path_by_id.size();
return true;
}
bool nested_node_refs_changed(const bNodeTree &ntree,
const Map<int32_t, bNestedNodePath> &new_path_by_id)
{
if (ntree.nested_node_refs_num != new_path_by_id.size()) {
return true;
}
for (const bNestedNodeRef &ref : ntree.nested_node_refs_span()) {
if (!new_path_by_id.contains(ref.id)) {
return true;
}
}
return false;
}
void reset_changed_flags(bNodeTree &ntree)
{
ntree.runtime->changed_flag = NTREE_CHANGED_NOTHING;
for (bNode *node : ntree.all_nodes()) {
node->runtime->changed_flag = NTREE_CHANGED_NOTHING;
node->runtime->update = 0;
LISTBASE_FOREACH (bNodeSocket *, socket, &node->inputs) {
socket->runtime->changed_flag = NTREE_CHANGED_NOTHING;
}
LISTBASE_FOREACH (bNodeSocket *, socket, &node->outputs) {
socket->runtime->changed_flag = NTREE_CHANGED_NOTHING;
}
}
ntree.tree_interface.reset_changed_flags();
}
};
} // namespace blender::bke
void BKE_ntree_update_tag_all(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_ANY);
}
void BKE_ntree_update_tag_node_property(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_node_new(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_node_type(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_socket_property(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_socket_new(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_socket_removed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_REMOVED_SOCKET);
}
void BKE_ntree_update_tag_socket_type(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_socket_availability(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_node_removed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_REMOVED_NODE);
}
void BKE_ntree_update_tag_node_mute(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_node_internal_link(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_INTERNAL_LINK);
}
void BKE_ntree_update_tag_link_changed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_link_removed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_link_added(bNodeTree *ntree, bNodeLink * /*link*/)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_link_mute(bNodeTree *ntree, bNodeLink * /*link*/)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_active_output_changed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_ANY);
}
void BKE_ntree_update_tag_missing_runtime_data(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_ALL);
}
void BKE_ntree_update_tag_parent_change(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_PARENT);
}
void BKE_ntree_update_tag_id_changed(Main *bmain, ID *id)
{
FOREACH_NODETREE_BEGIN (bmain, ntree, ntree_id) {
for (bNode *node : ntree->all_nodes()) {
if (node->id == id) {
node->runtime->update |= NODE_UPDATE_ID;
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
}
}
FOREACH_NODETREE_END;
}
void BKE_ntree_update_tag_image_user_changed(bNodeTree *ntree, ImageUser * /*iuser*/)
{
/* Would have to search for the node that uses the image user for a more detailed tag. */
add_tree_tag(ntree, NTREE_CHANGED_ANY);
}
uint64_t bNestedNodePath::hash() const
{
return blender::get_default_hash(this->node_id, this->id_in_node);
}
bool operator==(const bNestedNodePath &a, const bNestedNodePath &b)
{
return a.node_id == b.node_id && a.id_in_node == b.id_in_node;
}
/**
* Protect from recursive calls into the updating function. Some node update functions might
* trigger this from Python or in other cases.
*
* This could be added to #Main, but given that there is generally only one #Main, that's not
* really worth it now.
*/
static bool is_updating = false;
void BKE_ntree_update(Main &bmain,
const std::optional<blender::Span<bNodeTree *>> modified_trees,
const NodeTreeUpdateExtraParams &params)
{
if (is_updating) {
return;
}
is_updating = true;
blender::bke::NodeTreeMainUpdater updater{&bmain, params};
if (modified_trees.has_value()) {
updater.update_rooted(*modified_trees);
}
else {
updater.update();
}
is_updating = false;
}
void BKE_ntree_update_after_single_tree_change(Main &bmain,
bNodeTree &modified_tree,
const NodeTreeUpdateExtraParams &params)
{
BKE_ntree_update(bmain, blender::Span{&modified_tree}, params);
}
void BKE_ntree_update_without_main(bNodeTree &tree)
{
if (is_updating) {
return;
}
is_updating = true;
NodeTreeUpdateExtraParams params;
blender::bke::NodeTreeMainUpdater updater{nullptr, params};
updater.update_rooted({&tree});
is_updating = false;
}