Files
test/source/blender/io/collada/AnimationImporter.cpp

1418 lines
46 KiB
C++

/* SPDX-FileCopyrightText: 2010-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup collada
*/
#include <cstddef>
#include "COLLADAFWAnimation.h"
#include "COLLADAFWAnimationCurve.h"
#include "COLLADAFWAnimationList.h"
#include "COLLADAFWCamera.h"
#include "COLLADAFWEffect.h"
#include "COLLADAFWLight.h"
#include "COLLADAFWNode.h"
#include "COLLADAFWRotate.h"
#include "COLLADAFWUniqueId.h"
#include "DNA_armature_types.h"
#include "ED_keyframing.hh"
#include "ANIM_action.hh"
#include "ANIM_action_legacy.hh"
#include "ANIM_animdata.hh"
#include "ANIM_fcurve.hh"
#include "BLI_math_matrix.h"
#include "BLI_string.h"
#include "BKE_action.hh"
#include "BKE_armature.hh"
#include "BKE_fcurve.hh"
#include "BKE_object.hh"
#include "AnimationImporter.h"
#include "ArmatureImporter.h"
#include "collada_utils.h"
#include <algorithm>
/* first try node name, if not available (since is optional), fall back to original id */
template<class T> static const char *bc_get_joint_name(T *node)
{
const std::string &id = node->getName();
return id.empty() ? node->getOriginalId().c_str() : id.c_str();
}
/**
* Ensures that the given ID has an action assigned to it and, for layered
* actions, an assigned slot.
*/
static void ensure_action_and_slot_for_id(Main *bmain, ID &id)
{
bAction *dna_action = blender::animrig::id_action_ensure(bmain, &id);
BLI_assert(dna_action != nullptr);
if (blender::animrig::legacy::action_treat_as_legacy(*dna_action)) {
/* We don't ensure a slot for legacy actions, since they don't have slots. */
return;
}
blender::animrig::Action &action = dna_action->wrap();
blender::animrig::Slot *slot = blender::animrig::assign_action_ensure_slot_for_keying(action,
id);
BLI_assert(slot != nullptr);
UNUSED_VARS_NDEBUG(slot);
}
FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path)
{
FCurve *fcu = BKE_fcurve_create();
fcu->flag = (FCURVE_VISIBLE | FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
fcu->array_index = array_index;
return fcu;
}
void AnimationImporter::add_bezt(FCurve *fcu,
float frame,
float value,
eBezTriple_Interpolation ipo)
{
// float fps = float(FPS);
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
bez.vec[1][0] = frame;
bez.vec[1][1] = value;
bez.ipo = ipo; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
blender::animrig::insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
BKE_fcurve_handles_recalc(fcu);
}
void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
{
COLLADAFW::FloatOrDoubleArray &input = curve->getInputValues();
COLLADAFW::FloatOrDoubleArray &output = curve->getOutputValues();
float fps = float(FPS);
size_t dim = curve->getOutDimension();
uint i;
std::vector<FCurve *> &fcurves = curve_map[curve->getUniqueId()];
switch (dim) {
case 1: /* X, Y, Z or angle */
case 3: /* XYZ */
case 4:
case 16: /* matrix */
{
for (i = 0; i < dim; i++) {
FCurve *fcu = BKE_fcurve_create();
fcu->flag = (FCURVE_VISIBLE | FCURVE_SELECTED);
fcu->array_index = 0;
fcu->auto_smoothing = U.auto_smoothing_new;
for (uint j = 0; j < curve->getKeyCount(); j++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
/* input, output */
bez.vec[1][0] = bc_get_float_value(input, j) * fps;
bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
bez.h1 = bez.h2 = HD_AUTO;
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ||
curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_STEP)
{
COLLADAFW::FloatOrDoubleArray &intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray &outtan = curve->getOutTangentValues();
/* In-tangent. */
uint index = 2 * (j * dim + i);
bez.vec[0][0] = bc_get_float_value(intan, index) * fps;
bez.vec[0][1] = bc_get_float_value(intan, index + 1);
/* Out-tangent. */
bez.vec[2][0] = bc_get_float_value(outtan, index) * fps;
bez.vec[2][1] = bc_get_float_value(outtan, index + 1);
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER) {
bez.ipo = BEZT_IPO_BEZ;
bez.h1 = bez.h2 = HD_AUTO_ANIM;
}
else {
bez.ipo = BEZT_IPO_CONST;
}
}
else {
bez.ipo = BEZT_IPO_LIN;
}
#if 0
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
#endif
bez.f1 = bez.f2 = bez.f3 = SELECT;
blender::animrig::insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
}
BKE_fcurve_handles_recalc(fcu);
fcurves.push_back(fcu);
unused_curves.push_back(fcu);
}
break;
}
default:
fprintf(stderr,
"Output dimension of %d is not yet supported (animation id = %s)\n",
int(dim),
curve->getOriginalId().c_str());
}
}
void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
{
for (uint i = 0; i < cu->totvert; i++) {
/* TODO: convert handles too. */
cu->bezt[i].vec[1][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[0][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[2][1] *= DEG2RADF(1.0f);
}
}
void AnimationImporter::fcurve_scale(FCurve *cu, int scale)
{
for (uint i = 0; i < cu->totvert; i++) {
/* TODO: convert handles too. */
cu->bezt[i].vec[1][1] *= scale;
cu->bezt[i].vec[0][1] *= scale;
cu->bezt[i].vec[2][1] *= scale;
}
}
void AnimationImporter::fcurve_is_used(FCurve *fcu)
{
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu),
unused_curves.end());
}
AnimationImporter::~AnimationImporter()
{
/* free unused FCurves */
for (FCurve *unused_curve : unused_curves) {
BKE_fcurve_free(unused_curve);
}
if (!unused_curves.empty()) {
fprintf(stderr, "removed %d unused curves\n", int(unused_curves.size()));
}
}
bool AnimationImporter::write_animation(const COLLADAFW::Animation *anim)
{
if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve *)anim;
/* XXX Don't know if it's necessary
* Should we check outPhysicalDimension? */
if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
fprintf(stderr, "Inputs physical dimension is not time.\n");
return true;
}
/* a curve can have mixed interpolation type,
* in this case curve->getInterpolationTypes returns a list of interpolation types per key */
COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
switch (interp) {
case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
animation_to_fcurves(curve);
break;
default:
/* TODO: there are also CARDINAL, HERMITE, BSPLINE and STEP types. */
fprintf(stderr,
"CARDINAL, HERMITE and BSPLINE anim interpolation types not supported yet.\n");
break;
}
}
else {
/* not supported yet */
fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
}
}
else {
fprintf(stderr, "FORMULA animation type is not supported yet.\n");
}
return true;
}
bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList *animlist)
{
const COLLADAFW::UniqueId &animlist_id = animlist->getUniqueId();
animlist_map[animlist_id] = animlist;
#if 0
/* should not happen */
if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
return true;
}
/* for bones rna_path is like: pose.bones["bone-name"].rotation */
#endif
return true;
}
void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob)
{
float mat[4][4];
TransformReader::get_node_mat(mat, node, &uid_animated_map, ob);
if (ob) {
copy_m4_m4(ob->runtime->object_to_world.ptr(), mat);
BKE_object_apply_mat4(ob, ob->object_to_world().ptr(), false, false);
}
}
void AnimationImporter::modify_fcurve(std::vector<FCurve *> *curves,
const char *rna_path,
int array_index,
int scale)
{
std::vector<FCurve *>::iterator it;
int i;
for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdup(rna_path);
if (array_index == -1) {
fcu->array_index = i;
}
else {
fcu->array_index = array_index;
}
if (scale != 1) {
fcurve_scale(fcu, scale);
}
fcurve_is_used(fcu);
}
}
void AnimationImporter::unused_fcurve(std::vector<FCurve *> *curves)
{
/* when an error happens and we can't actually use curve remove it from unused_curves */
std::vector<FCurve *>::iterator it;
for (it = curves->begin(); it != curves->end(); it++) {
FCurve *fcu = *it;
fcurve_is_used(fcu);
}
}
void AnimationImporter::find_frames(std::vector<float> *frames, std::vector<FCurve *> *curves)
{
std::vector<FCurve *>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
for (uint k = 0; k < fcu->totvert; k++) {
/* get frame value from bezTriple */
float fra = fcu->bezt[k].vec[1][0];
/* if frame already not added add frame to frames */
if (std::find(frames->begin(), frames->end(), fra) == frames->end()) {
frames->push_back(fra);
}
}
}
}
static int get_animation_axis_index(const COLLADABU::Math::Vector3 &axis)
{
int index;
if (COLLADABU::Math::Vector3::UNIT_X == axis) {
index = 0;
}
else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
index = 1;
}
else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
index = 2;
}
else {
index = -1;
}
return index;
}
void AnimationImporter::Assign_transform_animations(
COLLADAFW::Transformation *transform,
const COLLADAFW::AnimationList::AnimationBinding *binding,
std::vector<FCurve *> *curves,
bool is_joint,
char *joint_path)
{
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
/* to check if the no of curves are valid */
bool xyz =
(ELEM(tm_type, COLLADAFW::Transformation::TRANSLATE, COLLADAFW::Transformation::SCALE) &&
binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, int(curves->size()));
return;
}
char rna_path[100];
switch (tm_type) {
case COLLADAFW::Transformation::TRANSLATE:
case COLLADAFW::Transformation::SCALE: {
bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
if (is_joint) {
SNPRINTF(rna_path, "%s.%s", joint_path, loc ? "location" : "scale");
}
else {
STRNCPY(rna_path, loc ? "location" : "scale");
}
switch (binding->animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
modify_fcurve(curves, rna_path, 0);
break;
case COLLADAFW::AnimationList::POSITION_Y:
modify_fcurve(curves, rna_path, 1);
break;
case COLLADAFW::AnimationList::POSITION_Z:
modify_fcurve(curves, rna_path, 2);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
modify_fcurve(curves, rna_path, -1);
break;
default:
unused_fcurve(curves);
fprintf(stderr,
"AnimationClass %d is not supported for %s.\n",
binding->animationClass,
loc ? "TRANSLATE" : "SCALE");
}
break;
}
case COLLADAFW::Transformation::ROTATE: {
if (is_joint) {
SNPRINTF(rna_path, "%s.rotation_euler", joint_path);
}
else {
STRNCPY(rna_path, "rotation_euler");
}
std::vector<FCurve *>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
/* if transform is rotation the fcurves values must be turned in to radian. */
if (is_rotation) {
fcurve_deg_to_rad(fcu);
}
}
const COLLADAFW::Rotate *rot = (COLLADAFW::Rotate *)transform;
const COLLADABU::Math::Vector3 &axis = rot->getRotationAxis();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::ANGLE: {
int axis_index = get_animation_axis_index(axis);
if (axis_index >= 0) {
modify_fcurve(curves, rna_path, axis_index);
}
else {
unused_fcurve(curves);
}
break;
}
case COLLADAFW::AnimationList::AXISANGLE:
/* TODO: convert axis-angle to quaternion? or XYZ? */
default:
unused_fcurve(curves);
fprintf(stderr,
"AnimationClass %d is not supported for ROTATE transformation.\n",
binding->animationClass);
}
break;
}
case COLLADAFW::Transformation::MATRIX:
#if 0
{
COLLADAFW::Matrix *mat = (COLLADAFW::Matrix *)transform;
COLLADABU::Math::Matrix4 mat4 = mat->getMatrix();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::TRANSFORM:
}
}
#endif
unused_fcurve(curves);
break;
case COLLADAFW::Transformation::SKEW:
case COLLADAFW::Transformation::LOOKAT:
unused_fcurve(curves);
fprintf(stderr, "Animation of SKEW and LOOKAT transformations is not supported yet.\n");
break;
}
}
void AnimationImporter::Assign_color_animations(const COLLADAFW::UniqueId &listid,
AnimData &adt,
const char *anim_type)
{
BLI_assert(adt.action != nullptr);
char rna_path[100];
STRNCPY(rna_path, anim_type);
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
if (animlist == nullptr) {
fprintf(stderr,
"Collada: No animlist found for ID: %s of type %s\n",
listid.toAscii().c_str(),
anim_type);
return;
}
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
switch (bindings[j].animationClass) {
case COLLADAFW::AnimationList::COLOR_R:
modify_fcurve(&animcurves, rna_path, 0);
break;
case COLLADAFW::AnimationList::COLOR_G:
modify_fcurve(&animcurves, rna_path, 1);
break;
case COLLADAFW::AnimationList::COLOR_B:
modify_fcurve(&animcurves, rna_path, 2);
break;
case COLLADAFW::AnimationList::COLOR_RGB:
case COLLADAFW::AnimationList::COLOR_RGBA: /* to do-> set intensity */
modify_fcurve(&animcurves, rna_path, -1);
break;
default:
unused_fcurve(&animcurves);
fprintf(stderr,
"AnimationClass %d is not supported for %s.\n",
bindings[j].animationClass,
"COLOR");
}
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
blender::animrig::action_fcurve_attach(
adt.action->wrap(), adt.slot_handle, *fcu, std::nullopt);
fcurve_is_used(fcu);
}
}
}
void AnimationImporter::Assign_float_animations(const COLLADAFW::UniqueId &listid,
AnimData &adt,
const char *anim_type)
{
BLI_assert(adt.action != nullptr);
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
/* anim_type has animations */
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
STRNCPY(rna_path, anim_type);
modify_fcurve(&animcurves, rna_path, 0);
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
/* All anim_types whose values are to be converted from Degree to Radians can be ORed here
*/
if (STREQ("spot_size", anim_type)) {
/* NOTE: Do NOT convert if imported file was made by blender <= 2.69.10
* Reason: old blender versions stored spot_size in radians (was a bug)
*/
if (this->import_from_version.empty() ||
BLI_strcasecmp_natural(this->import_from_version.c_str(), "2.69.10") != -1)
{
fcurve_deg_to_rad(fcu);
}
}
/** XXX What About animation-type "rotation" ? */
blender::animrig::action_fcurve_attach(
adt.action->wrap(), adt.slot_handle, *fcu, std::nullopt);
fcurve_is_used(fcu);
}
}
}
float AnimationImporter::convert_to_focal_length(float in_xfov,
int fov_type,
float aspect,
float sensorx)
{
/* NOTE: Needs more testing (As we currently have no official test data for this) */
float xfov = (fov_type == CAMERA_YFOV) ?
(2.0f * atanf(aspect * tanf(DEG2RADF(in_xfov) * 0.5f))) :
DEG2RADF(in_xfov);
return fov_to_focallength(xfov, sensorx);
}
void AnimationImporter::Assign_lens_animations(const COLLADAFW::UniqueId &listid,
AnimData &adt,
const double aspect,
const Camera *cam,
const char *anim_type,
int fov_type)
{
BLI_assert(adt.action != nullptr);
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
/* anim_type has animations */
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
STRNCPY(rna_path, anim_type);
modify_fcurve(&animcurves, rna_path, 0);
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
for (uint i = 0; i < fcu->totvert; i++) {
fcu->bezt[i].vec[0][1] = convert_to_focal_length(
fcu->bezt[i].vec[0][1], fov_type, aspect, cam->sensor_x);
fcu->bezt[i].vec[1][1] = convert_to_focal_length(
fcu->bezt[i].vec[1][1], fov_type, aspect, cam->sensor_x);
fcu->bezt[i].vec[2][1] = convert_to_focal_length(
fcu->bezt[i].vec[2][1], fov_type, aspect, cam->sensor_x);
}
blender::animrig::action_fcurve_attach(
adt.action->wrap(), adt.slot_handle, *fcu, std::nullopt);
fcurve_is_used(fcu);
}
}
}
void AnimationImporter::apply_matrix_curves(Object *ob,
std::vector<FCurve *> &animcurves,
COLLADAFW::Node *root,
COLLADAFW::Node *node,
COLLADAFW::Transformation *tm)
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
const char *bone_name = is_joint ? bc_get_joint_name(node) : nullptr;
char joint_path[200];
if (is_joint) {
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
}
std::vector<float> frames;
find_frames(&frames, &animcurves);
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
/* new curves to assign matrix transform animation */
FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale */
uint totcu = 10;
const char *tm_str = nullptr;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
if (is_joint) {
SNPRINTF(rna_path, "%s.%s", joint_path, tm_str);
}
else {
STRNCPY(rna_path, tm_str);
}
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.empty()) {
return;
}
std::sort(frames.begin(), frames.end());
std::vector<float>::iterator it;
/* sample values at each frame */
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
/* calc object-space mat */
evaluate_transform_at_frame(matfra, node, fra);
/* for joints, we need a special matrix */
if (is_joint) {
/* special matrix: iR * M * iR_dae * R
* where R, iR are bone rest and inverse rest mats in world space (Blender bones),
* iR_dae is joint inverse rest matrix (DAE)
* and M is an evaluated joint world-space matrix (DAE) */
float temp[4][4], par[4][4];
/* calc M */
calc_joint_parent_mat_rest(par, nullptr, root, node);
mul_m4_m4m4(temp, par, matfra);
/* calc special matrix */
mul_m4_series(mat, irest, temp, irest_dae, rest);
}
else {
copy_m4_m4(mat, matfra);
}
float rot[4], loc[3], scale[3];
mat4_decompose(loc, rot, scale, mat);
/* add keys */
for (int i = 0; i < totcu; i++) {
if (i < 4) {
add_bezt(newcu[i], fra, rot[i]);
}
else if (i < 7) {
add_bezt(newcu[i], fra, loc[i - 4]);
}
else {
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
}
Main *bmain = CTX_data_main(mContext);
ensure_action_and_slot_for_id(bmain, ob->id);
/* add curves */
for (int i = 0; i < totcu; i++) {
if (is_joint) {
add_bone_fcurve(ob, node, newcu[i]);
}
else {
blender::animrig::action_fcurve_attach(
ob->adt->action->wrap(), ob->adt->slot_handle, *newcu[i], std::nullopt);
}
#if 0
fcurve_is_used(newcu[i]); /* never added to unused */
#endif
}
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else {
ob->rotmode = ROT_MODE_QUAT;
}
}
/*
* This function returns the aspect ration from the Collada camera.
*
* NOTE:COLLADA allows to specify either XFov, or YFov alone.
* In that case the aspect ratio can be determined from
* the viewport aspect ratio (which is 1:1 ?)
* XXX: check this: its probably wrong!
* If both values are specified, then the aspect ration is simply xfov/yfov
* and if aspect ratio is defined, then .. well then its that one.
*/
static double get_aspect_ratio(const COLLADAFW::Camera *camera)
{
double aspect = camera->getAspectRatio().getValue();
if (aspect == 0) {
const double yfov = camera->getYFov().getValue();
if (yfov == 0) {
aspect = 1; /* assume yfov and xfov are equal */
}
else {
const double xfov = camera->getXFov().getValue();
if (xfov == 0) {
aspect = 1;
}
else {
aspect = xfov / yfov;
}
}
}
return aspect;
}
void AnimationImporter::translate_Animations(
COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node *> &root_map,
std::multimap<COLLADAFW::UniqueId, Object *> &object_map,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map,
std::map<COLLADAFW::UniqueId, Material *> uid_material_map)
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::UniqueId uid = node->getUniqueId();
COLLADAFW::Node *root = root_map.find(uid) == root_map.end() ? node : root_map[uid];
Object *ob;
if (is_joint) {
ob = armature_importer->get_armature_for_joint(root);
}
else {
ob = object_map.find(uid) == object_map.end() ? nullptr : object_map.find(uid)->second;
}
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return;
}
AnimationImporter::AnimMix *animType = get_animation_type(node, FW_object_map);
Main *bmain = CTX_data_main(mContext);
if ((animType->transform) != 0) {
// const char *bone_name = is_joint ? bc_get_joint_name(node) : nullptr; /* UNUSED */
char joint_path[200];
if (is_joint) {
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
}
ensure_action_and_slot_for_id(bmain, ob->id);
const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
/* for each transformation in node */
for (uint i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
const COLLADAFW::UniqueId &listid = transform->getAnimationList();
/* check if transformation has animations */
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
/* transformation has animations */
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings =
animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
if (is_matrix) {
apply_matrix_curves(ob, animcurves, root, node, transform);
}
else {
/* Calculate RNA-paths and array index of F-Curves according to transformation and
* animation class */
Assign_transform_animations(transform, &bindings[j], &animcurves, is_joint, joint_path);
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
blender::animrig::action_fcurve_attach(
ob->adt->action->wrap(), ob->adt->slot_handle, *fcu, std::nullopt);
fcurve_is_used(fcu);
}
}
}
if (is_rotation && !(is_joint || is_matrix)) {
ob->rotmode = ROT_MODE_EUL;
}
}
}
if ((animType->light) != 0) {
Light *lamp = (Light *)ob->data;
ensure_action_and_slot_for_id(bmain, lamp->id);
const COLLADAFW::InstanceLightPointerArray &nodeLights = node->getInstanceLights();
for (uint i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *)
FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
if ((animType->light & LIGHT_COLOR) != 0) {
const COLLADAFW::Color *col = &light->getColor();
const COLLADAFW::UniqueId &listid = col->getAnimationList();
Assign_color_animations(listid, *lamp->adt, "color");
}
if ((animType->light & LIGHT_FOA) != 0) {
const COLLADAFW::AnimatableFloat *foa = &light->getFallOffAngle();
const COLLADAFW::UniqueId &listid = foa->getAnimationList();
Assign_float_animations(listid, *lamp->adt, "spot_size");
}
if ((animType->light & LIGHT_FOE) != 0) {
const COLLADAFW::AnimatableFloat *foe = &light->getFallOffExponent();
const COLLADAFW::UniqueId &listid = foe->getAnimationList();
Assign_float_animations(listid, *lamp->adt, "spot_blend");
}
}
}
if (animType->camera != 0) {
Camera *cam = (Camera *)ob->data;
ensure_action_and_slot_for_id(bmain, cam->id);
const COLLADAFW::InstanceCameraPointerArray &nodeCameras = node->getInstanceCameras();
for (uint i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *)
FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if ((animType->camera & CAMERA_XFOV) != 0) {
const COLLADAFW::AnimatableFloat *xfov = &camera->getXFov();
const COLLADAFW::UniqueId &listid = xfov->getAnimationList();
double aspect = get_aspect_ratio(camera);
Assign_lens_animations(listid, *cam->adt, aspect, cam, "lens", CAMERA_XFOV);
}
else if ((animType->camera & CAMERA_YFOV) != 0) {
const COLLADAFW::AnimatableFloat *yfov = &camera->getYFov();
const COLLADAFW::UniqueId &listid = yfov->getAnimationList();
double aspect = get_aspect_ratio(camera);
Assign_lens_animations(listid, *cam->adt, aspect, cam, "lens", CAMERA_YFOV);
}
else if ((animType->camera & CAMERA_XMAG) != 0) {
const COLLADAFW::AnimatableFloat *xmag = &camera->getXMag();
const COLLADAFW::UniqueId &listid = xmag->getAnimationList();
Assign_float_animations(listid, *cam->adt, "ortho_scale");
}
else if ((animType->camera & CAMERA_YMAG) != 0) {
const COLLADAFW::AnimatableFloat *ymag = &camera->getYMag();
const COLLADAFW::UniqueId &listid = ymag->getAnimationList();
Assign_float_animations(listid, *cam->adt, "ortho_scale");
}
if ((animType->camera & CAMERA_ZFAR) != 0) {
const COLLADAFW::AnimatableFloat *zfar = &camera->getFarClippingPlane();
const COLLADAFW::UniqueId &listid = zfar->getAnimationList();
Assign_float_animations(listid, *cam->adt, "clip_end");
}
if ((animType->camera & CAMERA_ZNEAR) != 0) {
const COLLADAFW::AnimatableFloat *znear = &camera->getNearClippingPlane();
const COLLADAFW::UniqueId &listid = znear->getAnimationList();
Assign_float_animations(listid, *cam->adt, "clip_start");
}
}
}
if (animType->material != 0) {
const COLLADAFW::InstanceGeometryPointerArray &nodeGeoms = node->getInstanceGeometries();
for (uint i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray &matBinds = nodeGeoms[i]->getMaterialBindings();
for (uint j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId &matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *)(FW_object_map[matuid]);
if (ef != nullptr) { /* can be nullptr #28909. */
Material *ma = uid_material_map[matuid];
if (!ma) {
fprintf(stderr,
"Collada: Node %s refers to undefined material\n",
node->getName().c_str());
continue;
}
ensure_action_and_slot_for_id(bmain, ma->id);
const COLLADAFW::CommonEffectPointerArray &commonEffects = ef->getCommonEffects();
COLLADAFW::EffectCommon *efc = commonEffects[0];
if ((animType->material & MATERIAL_SHININESS) != 0) {
const COLLADAFW::FloatOrParam *shin = &efc->getShininess();
const COLLADAFW::UniqueId &listid = shin->getAnimationList();
Assign_float_animations(listid, *ma->adt, "specular_hardness");
}
if ((animType->material & MATERIAL_IOR) != 0) {
const COLLADAFW::FloatOrParam *ior = &efc->getIndexOfRefraction();
const COLLADAFW::UniqueId &listid = ior->getAnimationList();
Assign_float_animations(listid, *ma->adt, "raytrace_transparency.ior");
}
if ((animType->material & MATERIAL_SPEC_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &efc->getSpecular();
const COLLADAFW::UniqueId &listid = cot->getColor().getAnimationList();
Assign_color_animations(listid, *ma->adt, "specular_color");
}
if ((animType->material & MATERIAL_DIFF_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &efc->getDiffuse();
const COLLADAFW::UniqueId &listid = cot->getColor().getAnimationList();
Assign_color_animations(listid, *ma->adt, "diffuse_color");
}
}
}
}
}
delete animType;
}
AnimationImporter::AnimMix *AnimationImporter::get_animation_type(
const COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map)
{
AnimMix *types = new AnimMix();
const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
/* for each transformation in node */
for (uint i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
const COLLADAFW::UniqueId &listid = transform->getAnimationList();
/* check if transformation has animations */
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
types->transform = types->transform | BC_NODE_TRANSFORM;
break;
}
const COLLADAFW::InstanceLightPointerArray &nodeLights = node->getInstanceLights();
for (uint i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *)
FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
types->light = setAnimType(&light->getColor(), (types->light), LIGHT_COLOR);
types->light = setAnimType(&light->getFallOffAngle(), (types->light), LIGHT_FOA);
types->light = setAnimType(&light->getFallOffExponent(), (types->light), LIGHT_FOE);
if (types->light != 0) {
break;
}
}
const COLLADAFW::InstanceCameraPointerArray &nodeCameras = node->getInstanceCameras();
for (uint i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *)
FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if (camera == nullptr) {
/* Can happen if the node refers to an unknown camera. */
continue;
}
const bool is_perspective_type = camera->getCameraType() == COLLADAFW::Camera::PERSPECTIVE;
int addition;
const COLLADAFW::Animatable *mag;
const COLLADAFW::UniqueId listid = camera->getYMag().getAnimationList();
if (animlist_map.find(listid) != animlist_map.end()) {
mag = &camera->getYMag();
addition = (is_perspective_type) ? CAMERA_YFOV : CAMERA_YMAG;
}
else {
mag = &camera->getXMag();
addition = (is_perspective_type) ? CAMERA_XFOV : CAMERA_XMAG;
}
types->camera = setAnimType(mag, (types->camera), addition);
types->camera = setAnimType(&camera->getFarClippingPlane(), (types->camera), CAMERA_ZFAR);
types->camera = setAnimType(&camera->getNearClippingPlane(), (types->camera), CAMERA_ZNEAR);
if (types->camera != 0) {
break;
}
}
const COLLADAFW::InstanceGeometryPointerArray &nodeGeoms = node->getInstanceGeometries();
for (uint i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray &matBinds = nodeGeoms[i]->getMaterialBindings();
for (uint j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId &matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *)(FW_object_map[matuid]);
if (ef != nullptr) { /* can be nullptr #28909. */
const COLLADAFW::CommonEffectPointerArray &commonEffects = ef->getCommonEffects();
if (!commonEffects.empty()) {
COLLADAFW::EffectCommon *efc = commonEffects[0];
types->material = setAnimType(
&efc->getShininess(), (types->material), MATERIAL_SHININESS);
types->material = setAnimType(
&efc->getSpecular().getColor(), (types->material), MATERIAL_SPEC_COLOR);
types->material = setAnimType(
&efc->getDiffuse().getColor(), (types->material), MATERIAL_DIFF_COLOR);
#if 0
types->material = setAnimType(&(efc->get()), (types->material), MATERIAL_TRANSPARENCY);
#endif
types->material = setAnimType(
&efc->getIndexOfRefraction(), (types->material), MATERIAL_IOR);
}
}
}
}
return types;
}
int AnimationImporter::setAnimType(const COLLADAFW::Animatable *prop, int types, int addition)
{
int anim_type;
const COLLADAFW::UniqueId &listid = prop->getAnimationList();
if (animlist_map.find(listid) != animlist_map.end()) {
anim_type = types | addition;
}
else {
anim_type = types;
}
return anim_type;
}
void AnimationImporter::evaluate_transform_at_frame(float mat[4][4],
COLLADAFW::Node *node,
float fra)
{
const COLLADAFW::TransformationPointerArray &tms = node->getTransformations();
unit_m4(mat);
for (uint i = 0; i < tms.getCount(); i++) {
COLLADAFW::Transformation *tm = tms[i];
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
float m[4][4];
unit_m4(m);
std::string nodename = node->getName().empty() ? node->getOriginalId() : node->getName();
if (!evaluate_animation(tm, m, fra, nodename.c_str())) {
switch (type) {
case COLLADAFW::Transformation::ROTATE:
dae_rotate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::TRANSLATE:
dae_translate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::SCALE:
dae_scale_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::MATRIX:
dae_matrix_to_mat4(tm, m);
break;
default:
fprintf(stderr, "unsupported transformation type %d\n", type);
}
}
float temp[4][4];
copy_m4_m4(temp, mat);
mul_m4_m4m4(mat, temp, m);
}
}
static void report_class_type_unsupported(const char *path,
const COLLADAFW::AnimationList::AnimationClass animclass,
const COLLADAFW::Transformation::TransformationType type)
{
if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) {
fprintf(stderr, "%s: UNKNOWN animation class\n", path);
}
else {
fprintf(stderr,
"%s: animation class %d is not supported yet for transformation type %d\n",
path,
animclass,
type);
}
}
bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm,
float mat[4][4],
float fra,
const char *node_id)
{
const COLLADAFW::UniqueId &listid = tm->getAnimationList();
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
if (!ELEM(type,
COLLADAFW::Transformation::ROTATE,
COLLADAFW::Transformation::SCALE,
COLLADAFW::Transformation::TRANSLATE,
COLLADAFW::Transformation::MATRIX))
{
fprintf(stderr, "animation of transformation %d is not supported yet\n", type);
return false;
}
if (animlist_map.find(listid) == animlist_map.end()) {
return false;
}
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
float vec[3];
bool is_scale = (type == COLLADAFW::Transformation::SCALE);
bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE);
if (is_scale) {
dae_scale_to_v3(tm, vec);
}
else if (is_translate) {
dae_translate_to_v3(tm, vec);
}
for (uint index = 0; index < bindings.getCount(); index++) {
const COLLADAFW::AnimationList::AnimationBinding &binding = bindings[index];
std::vector<FCurve *> &curves = curve_map[binding.animation];
COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass;
char path[100];
switch (type) {
case COLLADAFW::Transformation::ROTATE:
SNPRINTF(path, "%s.rotate (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::SCALE:
SNPRINTF(path, "%s.scale (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::TRANSLATE:
SNPRINTF(path, "%s.translate (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::MATRIX:
SNPRINTF(path, "%s.matrix (binding %u)", node_id, index);
break;
default:
break;
}
if (type == COLLADAFW::Transformation::ROTATE) {
if (curves.size() != 1) {
fprintf(stderr, "expected 1 curve, got %d\n", int(curves.size()));
return false;
}
/* TODO: support other animation-classes. */
if (animclass != COLLADAFW::AnimationList::ANGLE) {
report_class_type_unsupported(path, animclass, type);
return false;
}
COLLADABU::Math::Vector3 &axis = ((COLLADAFW::Rotate *)tm)->getRotationAxis();
float ax[3] = {float(axis[0]), float(axis[1]), float(axis[2])};
float angle = evaluate_fcurve(curves[0], fra);
axis_angle_to_mat4(mat, ax, angle);
return true;
}
if (is_scale || is_translate) {
bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ;
if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) {
if (is_xyz) {
fprintf(stderr, "%s: expected 3 curves, got %d\n", path, int(curves.size()));
}
else {
fprintf(stderr, "%s: expected 1 curve, got %d\n", path, int(curves.size()));
}
return false;
}
switch (animclass) {
case COLLADAFW::AnimationList::POSITION_X:
vec[0] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Y:
vec[1] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Z:
vec[2] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
vec[0] = evaluate_fcurve(curves[0], fra);
vec[1] = evaluate_fcurve(curves[1], fra);
vec[2] = evaluate_fcurve(curves[2], fra);
break;
default:
report_class_type_unsupported(path, animclass, type);
break;
}
}
else if (type == COLLADAFW::Transformation::MATRIX) {
/* for now, of matrix animation,
* support only the case when all values are packed into one animation */
if (curves.size() != 16) {
fprintf(stderr, "%s: expected 16 curves, got %d\n", path, int(curves.size()));
return false;
}
COLLADABU::Math::Matrix4 matrix;
int mi = 0, mj = 0;
for (const FCurve *curve : curves) {
matrix.setElement(mi, mj, evaluate_fcurve(curve, fra));
mj++;
if (mj == 4) {
mi++;
mj = 0;
}
}
UnitConverter::dae_matrix_to_mat4_(mat, matrix);
return true;
}
}
if (is_scale) {
size_to_mat4(mat, vec);
}
else {
copy_v3_v3(mat[3], vec);
}
return is_scale || is_translate;
}
return false;
}
void AnimationImporter::get_joint_rest_mat(float mat[4][4],
COLLADAFW::Node *root,
COLLADAFW::Node *node)
{
/* if bind mat is not available,
* use "current" node transform, i.e. all those tms listed inside <node> */
if (!armature_importer->get_joint_bind_mat(mat, node)) {
float par[4][4], m[4][4];
calc_joint_parent_mat_rest(par, nullptr, root, node);
get_node_mat(m, node, nullptr, nullptr);
mul_m4_m4m4(mat, par, m);
}
}
bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4],
float par[4][4],
COLLADAFW::Node *node,
COLLADAFW::Node *end)
{
float m[4][4];
if (node == end) {
par ? copy_m4_m4(mat, par) : unit_m4(mat);
return true;
}
/* use bind matrix if available or calc "current" world mat */
if (!armature_importer->get_joint_bind_mat(m, node)) {
if (par) {
float temp[4][4];
get_node_mat(temp, node, nullptr, nullptr);
mul_m4_m4m4(m, par, temp);
}
else {
get_node_mat(m, node, nullptr, nullptr);
}
}
COLLADAFW::NodePointerArray &children = node->getChildNodes();
for (uint i = 0; i < children.getCount(); i++) {
if (calc_joint_parent_mat_rest(mat, m, children[i], end)) {
return true;
}
}
return false;
}
void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu)
{
BLI_assert(ob->adt != nullptr && ob->adt->action != nullptr);
const char *bone_name = bc_get_joint_name(node);
blender::animrig::action_fcurve_attach(
ob->adt->action->wrap(), ob->adt->slot_handle, *fcu, bone_name);
}
void AnimationImporter::set_import_from_version(std::string import_from_version)
{
this->import_from_version = import_from_version;
}