Listing the "Blender Foundation" as copyright holder implied the Blender Foundation holds copyright to files which may include work from many developers. While keeping copyright on headers makes sense for isolated libraries, Blender's own code may be refactored or moved between files in a way that makes the per file copyright holders less meaningful. Copyright references to the "Blender Foundation" have been replaced with "Blender Authors", with the exception of `./extern/` since these this contains libraries which are more isolated, any changed to license headers there can be handled on a case-by-case basis. Some directories in `./intern/` have also been excluded: - `./intern/cycles/` it's own `AUTHORS` file is planned. - `./intern/opensubdiv/`. An "AUTHORS" file has been added, using the chromium projects authors file as a template. Design task: #110784 Ref !110783.
414 lines
11 KiB
C++
414 lines
11 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <new>
|
|
#include <type_traits>
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
namespace blender {
|
|
|
|
/**
|
|
* Under some circumstances #std::is_trivial_v<T> is false even though we know that the type is
|
|
* actually trivial. Using that extra knowledge allows for some optimizations.
|
|
*/
|
|
template<typename T> inline constexpr bool is_trivial_extended_v = std::is_trivial_v<T>;
|
|
template<typename T>
|
|
inline constexpr bool is_trivially_destructible_extended_v = is_trivial_extended_v<T> ||
|
|
std::is_trivially_destructible_v<T>;
|
|
template<typename T>
|
|
inline constexpr bool is_trivially_copy_constructible_extended_v =
|
|
is_trivial_extended_v<T> || std::is_trivially_copy_constructible_v<T>;
|
|
template<typename T>
|
|
inline constexpr bool is_trivially_move_constructible_extended_v =
|
|
is_trivial_extended_v<T> || std::is_trivially_move_constructible_v<T>;
|
|
|
|
template<typename T> void destruct_n(T *ptr, int64_t n)
|
|
{
|
|
if (is_trivially_destructible_extended_v<T>) {
|
|
return;
|
|
}
|
|
|
|
std::destroy_n(ptr, n);
|
|
}
|
|
|
|
template<typename T> void default_construct_n(T *ptr, int64_t n)
|
|
{
|
|
std::uninitialized_default_construct_n(ptr, n);
|
|
}
|
|
|
|
template<typename T> void initialized_copy_n(const T *src, int64_t n, T *dst)
|
|
{
|
|
std::copy_n(src, n, dst);
|
|
}
|
|
|
|
template<typename T> void uninitialized_copy_n(const T *src, int64_t n, T *dst)
|
|
{
|
|
std::uninitialized_copy_n(src, n, dst);
|
|
}
|
|
|
|
template<typename From, typename To>
|
|
void uninitialized_convert_n(const From *src, int64_t n, To *dst)
|
|
{
|
|
std::uninitialized_copy_n(src, n, dst);
|
|
}
|
|
|
|
template<typename T> void initialized_move_n(T *src, int64_t n, T *dst)
|
|
{
|
|
std::copy_n(std::make_move_iterator(src), n, dst);
|
|
}
|
|
|
|
template<typename T> void uninitialized_move_n(T *src, int64_t n, T *dst)
|
|
{
|
|
std::uninitialized_copy_n(std::make_move_iterator(src), n, dst);
|
|
}
|
|
|
|
template<typename T> void initialized_relocate_n(T *src, int64_t n, T *dst)
|
|
{
|
|
initialized_move_n(src, n, dst);
|
|
destruct_n(src, n);
|
|
}
|
|
|
|
template<typename T> void uninitialized_relocate_n(T *src, int64_t n, T *dst)
|
|
{
|
|
uninitialized_move_n(src, n, dst);
|
|
destruct_n(src, n);
|
|
}
|
|
|
|
template<typename T> void initialized_fill_n(T *dst, int64_t n, const T &value)
|
|
{
|
|
std::fill_n(dst, n, value);
|
|
}
|
|
|
|
template<typename T> void uninitialized_fill_n(T *dst, int64_t n, const T &value)
|
|
{
|
|
std::uninitialized_fill_n(dst, n, value);
|
|
}
|
|
|
|
template<typename T> struct DestructValueAtAddress {
|
|
DestructValueAtAddress() = default;
|
|
|
|
template<typename U> DestructValueAtAddress(const U &) {}
|
|
|
|
void operator()(T *ptr)
|
|
{
|
|
ptr->~T();
|
|
}
|
|
};
|
|
|
|
/**
|
|
* A destruct_ptr is like unique_ptr, but it will only call the destructor and will not free the
|
|
* memory. This is useful when using custom allocators.
|
|
*/
|
|
template<typename T> using destruct_ptr = std::unique_ptr<T, DestructValueAtAddress<T>>;
|
|
|
|
/**
|
|
* An `AlignedBuffer` is a byte array with at least the given size and alignment. The buffer will
|
|
* not be initialized by the default constructor.
|
|
*/
|
|
template<size_t Size, size_t Alignment> class AlignedBuffer {
|
|
struct Empty {
|
|
};
|
|
struct alignas(Alignment) Sized {
|
|
/* Don't create an empty array. This causes problems with some compilers. */
|
|
std::byte buffer_[Size > 0 ? Size : 1];
|
|
};
|
|
|
|
using BufferType = std::conditional_t<Size == 0, Empty, Sized>;
|
|
BLI_NO_UNIQUE_ADDRESS BufferType buffer_;
|
|
|
|
public:
|
|
operator void *()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
operator const void *() const
|
|
{
|
|
return this;
|
|
}
|
|
|
|
void *ptr()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
const void *ptr() const
|
|
{
|
|
return this;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This can be used to reserve memory for C++ objects whose lifetime is different from the
|
|
* lifetime of the object they are embedded in. It's used by containers with small buffer
|
|
* optimization and hash table implementations.
|
|
*/
|
|
template<typename T, int64_t Size = 1> class TypedBuffer {
|
|
private:
|
|
/** Required so that `sizeof(T)` is not required when `Size` is 0. */
|
|
static constexpr size_t get_size()
|
|
{
|
|
if constexpr (Size == 0) {
|
|
return 0;
|
|
}
|
|
else {
|
|
return sizeof(T) * size_t(Size);
|
|
}
|
|
}
|
|
|
|
/** Required so that `alignof(T)` is not required when `Size` is 0. */
|
|
static constexpr size_t get_alignment()
|
|
{
|
|
if constexpr (Size == 0) {
|
|
return 1;
|
|
}
|
|
else {
|
|
return alignof(T);
|
|
}
|
|
}
|
|
|
|
BLI_NO_UNIQUE_ADDRESS AlignedBuffer<get_size(), get_alignment()> buffer_;
|
|
|
|
public:
|
|
operator T *()
|
|
{
|
|
return static_cast<T *>(buffer_.ptr());
|
|
}
|
|
|
|
operator const T *() const
|
|
{
|
|
return static_cast<const T *>(buffer_.ptr());
|
|
}
|
|
|
|
T &operator*()
|
|
{
|
|
return *static_cast<T *>(buffer_.ptr());
|
|
}
|
|
|
|
const T &operator*() const
|
|
{
|
|
return *static_cast<const T *>(buffer_.ptr());
|
|
}
|
|
|
|
T *ptr()
|
|
{
|
|
return static_cast<T *>(buffer_.ptr());
|
|
}
|
|
|
|
const T *ptr() const
|
|
{
|
|
return static_cast<const T *>(buffer_.ptr());
|
|
}
|
|
|
|
T &ref()
|
|
{
|
|
return *static_cast<T *>(buffer_.ptr());
|
|
}
|
|
|
|
const T &ref() const
|
|
{
|
|
return *static_cast<const T *>(buffer_.ptr());
|
|
}
|
|
};
|
|
|
|
/* A dynamic stack buffer can be used instead of #alloca when wants to allocate a dynamic amount of
|
|
* memory on the stack. Using this class has some advantages:
|
|
* - It falls back to heap allocation, when the size is too large.
|
|
* - It can be used in loops safely.
|
|
* - If the buffer is heap allocated, it is free automatically in the destructor.
|
|
*/
|
|
template<size_t ReservedSize = 64, size_t ReservedAlignment = 64>
|
|
class alignas(ReservedAlignment) DynamicStackBuffer {
|
|
private:
|
|
/* Don't create an empty array. This causes problems with some compilers. */
|
|
char reserved_buffer_[(ReservedSize > 0) ? ReservedSize : 1];
|
|
void *buffer_;
|
|
|
|
public:
|
|
DynamicStackBuffer(const int64_t size, const int64_t alignment)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
BLI_assert(alignment >= 0);
|
|
if (size <= ReservedSize && alignment <= ReservedAlignment) {
|
|
buffer_ = reserved_buffer_;
|
|
}
|
|
else {
|
|
buffer_ = MEM_mallocN_aligned(size, alignment, __func__);
|
|
}
|
|
}
|
|
~DynamicStackBuffer()
|
|
{
|
|
if (buffer_ != reserved_buffer_) {
|
|
MEM_freeN(buffer_);
|
|
}
|
|
}
|
|
|
|
/* Don't allow any copying or moving of this type. */
|
|
DynamicStackBuffer(const DynamicStackBuffer &other) = delete;
|
|
DynamicStackBuffer(DynamicStackBuffer &&other) = delete;
|
|
DynamicStackBuffer &operator=(const DynamicStackBuffer &other) = delete;
|
|
DynamicStackBuffer &operator=(DynamicStackBuffer &&other) = delete;
|
|
|
|
void *buffer() const
|
|
{
|
|
return buffer_;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This can be used by container constructors. A parameter of this type should be used to indicate
|
|
* that the constructor does not construct the elements.
|
|
*/
|
|
class NoInitialization {
|
|
};
|
|
|
|
/**
|
|
* This can be used to mark a constructor of an object that does not throw exceptions. Other
|
|
* constructors can delegate to this constructor to make sure that the object lifetime starts.
|
|
* With this, the destructor of the object will be called, even when the remaining constructor
|
|
* throws.
|
|
*/
|
|
class NoExceptConstructor {
|
|
};
|
|
|
|
/**
|
|
* Helper variable that checks if a pointer type can be converted into another pointer type without
|
|
* issues. Possible issues are casting away const and casting a pointer to a child class.
|
|
* Adding const or casting to a parent class is fine.
|
|
*/
|
|
template<typename From, typename To>
|
|
inline constexpr bool is_convertible_pointer_v =
|
|
std::is_convertible_v<From, To> &&std::is_pointer_v<From> &&std::is_pointer_v<To>;
|
|
|
|
/**
|
|
* Helper variable that checks if a Span<From> can be converted to Span<To> safely, whereby From
|
|
* and To are pointers. Adding const and casting to a void pointer is allowed.
|
|
* Casting up and down a class hierarchy generally is not allowed, because this might change the
|
|
* pointer under some circumstances.
|
|
*/
|
|
template<typename From, typename To>
|
|
inline constexpr bool is_span_convertible_pointer_v =
|
|
/* Make sure we are working with pointers. */
|
|
std::is_pointer_v<From> &&std::is_pointer_v<To> &&
|
|
(/* No casting is necessary when both types are the same. */
|
|
std::is_same_v<From, To> ||
|
|
/* Allow adding const to the underlying type. */
|
|
std::is_same_v<const std::remove_pointer_t<From>, std::remove_pointer_t<To>> ||
|
|
/* Allow casting non-const pointers to void pointers. */
|
|
(!std::is_const_v<std::remove_pointer_t<From>> && std::is_same_v<To, void *>) ||
|
|
/* Allow casting any pointer to const void pointers. */
|
|
std::is_same_v<To, const void *>);
|
|
|
|
/**
|
|
* Same as #std::is_same_v but allows for checking multiple types at the same time.
|
|
*/
|
|
template<typename T, typename... Args>
|
|
inline constexpr bool is_same_any_v = (std::is_same_v<T, Args> || ...);
|
|
|
|
/**
|
|
* Inline buffers for small-object-optimization should be disable by default. Otherwise we might
|
|
* get large unexpected allocations on the stack.
|
|
*/
|
|
inline constexpr int64_t default_inline_buffer_capacity(size_t element_size)
|
|
{
|
|
return (int64_t(element_size) < 100) ? 4 : 0;
|
|
}
|
|
|
|
/**
|
|
* This can be used by containers to implement an exception-safe copy-assignment-operator.
|
|
* It assumes that the container has an exception safe copy constructor and an exception-safe
|
|
* move-assignment-operator.
|
|
*/
|
|
template<typename Container> Container ©_assign_container(Container &dst, const Container &src)
|
|
{
|
|
if (&src == &dst) {
|
|
return dst;
|
|
}
|
|
|
|
Container container_copy{src};
|
|
dst = std::move(container_copy);
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* This can be used by containers to implement an exception-safe move-assignment-operator.
|
|
* It assumes that the container has an exception-safe move-constructor and a noexcept constructor
|
|
* tagged with the NoExceptConstructor tag.
|
|
*/
|
|
template<typename Container>
|
|
Container &move_assign_container(Container &dst, Container &&src) noexcept(
|
|
std::is_nothrow_move_constructible_v<Container>)
|
|
{
|
|
if (&dst == &src) {
|
|
return dst;
|
|
}
|
|
|
|
dst.~Container();
|
|
if constexpr (std::is_nothrow_move_constructible_v<Container>) {
|
|
new (&dst) Container(std::move(src));
|
|
}
|
|
else {
|
|
try {
|
|
new (&dst) Container(std::move(src));
|
|
}
|
|
catch (...) {
|
|
new (&dst) Container(NoExceptConstructor());
|
|
throw;
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the value is different and was assigned.
|
|
*/
|
|
template<typename T> inline bool assign_if_different(T &old_value, T new_value)
|
|
{
|
|
if (old_value != new_value) {
|
|
old_value = std::move(new_value);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace blender
|
|
|
|
namespace blender::detail {
|
|
|
|
template<typename Func> struct ScopedDeferHelper {
|
|
Func func;
|
|
|
|
~ScopedDeferHelper()
|
|
{
|
|
func();
|
|
}
|
|
};
|
|
|
|
} // namespace blender::detail
|
|
|
|
#define BLI_SCOPED_DEFER_NAME1(a, b) a##b
|
|
#define BLI_SCOPED_DEFER_NAME2(a, b) BLI_SCOPED_DEFER_NAME1(a, b)
|
|
#define BLI_SCOPED_DEFER_NAME(a) BLI_SCOPED_DEFER_NAME2(_scoped_defer_##a##_, __LINE__)
|
|
|
|
/**
|
|
* Execute the given function when the current scope ends. This can be used to cheaply implement
|
|
* some RAII-like behavior for C types that don't support it. Long term, the types we want to use
|
|
* this with should either be converted to C++ or get a proper C++ API. Until then, this function
|
|
* can help avoid common resource leakages.
|
|
*/
|
|
#define BLI_SCOPED_DEFER(function_to_defer) \
|
|
auto BLI_SCOPED_DEFER_NAME(func) = (function_to_defer); \
|
|
blender::detail::ScopedDeferHelper<decltype(BLI_SCOPED_DEFER_NAME(func))> \
|
|
BLI_SCOPED_DEFER_NAME(helper){std::move(BLI_SCOPED_DEFER_NAME(func))};
|