Listing the "Blender Foundation" as copyright holder implied the Blender Foundation holds copyright to files which may include work from many developers. While keeping copyright on headers makes sense for isolated libraries, Blender's own code may be refactored or moved between files in a way that makes the per file copyright holders less meaningful. Copyright references to the "Blender Foundation" have been replaced with "Blender Authors", with the exception of `./extern/` since these this contains libraries which are more isolated, any changed to license headers there can be handled on a case-by-case basis. Some directories in `./intern/` have also been excluded: - `./intern/cycles/` it's own `AUTHORS` file is planned. - `./intern/opensubdiv/`. An "AUTHORS" file has been added, using the chromium projects authors file as a template. Design task: #110784 Ref !110783.
241 lines
5.9 KiB
C
241 lines
5.9 KiB
C
/* SPDX-FileCopyrightText: 2015 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "BLI_math_base.h"
|
|
#include "BLI_math_matrix.h"
|
|
#include "BLI_math_solvers.h"
|
|
#include "BLI_math_vector.h"
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
#include "eigen_capi.h"
|
|
|
|
#include <string.h>
|
|
|
|
/********************************** Eigen Solvers *********************************/
|
|
|
|
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
|
|
float r_eigen_values[3],
|
|
float r_eigen_vectors[3][3])
|
|
{
|
|
#ifndef NDEBUG
|
|
/* We must assert given matrix is self-adjoint (i.e. symmetric) */
|
|
if ((m3[0][1] != m3[1][0]) || (m3[0][2] != m3[2][0]) || (m3[1][2] != m3[2][1])) {
|
|
BLI_assert(0);
|
|
}
|
|
#endif
|
|
|
|
return EIG_self_adjoint_eigen_solve(
|
|
3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
|
|
}
|
|
|
|
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
|
|
{
|
|
EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
|
|
}
|
|
|
|
/***************************** Simple Solvers ************************************/
|
|
|
|
bool BLI_tridiagonal_solve(
|
|
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
|
|
{
|
|
if (count < 1) {
|
|
return false;
|
|
}
|
|
|
|
size_t bytes = sizeof(double) * (uint)count;
|
|
double *c1 = (double *)MEM_mallocN(bytes * 2, "tridiagonal_c1d1");
|
|
double *d1 = c1 + count;
|
|
|
|
if (!c1) {
|
|
return false;
|
|
}
|
|
|
|
int i;
|
|
double c_prev, d_prev, x_prev;
|
|
|
|
/* forward pass */
|
|
|
|
c1[0] = c_prev = ((double)c[0]) / b[0];
|
|
d1[0] = d_prev = ((double)d[0]) / b[0];
|
|
|
|
for (i = 1; i < count; i++) {
|
|
double denum = b[i] - a[i] * c_prev;
|
|
|
|
c1[i] = c_prev = c[i] / denum;
|
|
d1[i] = d_prev = (d[i] - a[i] * d_prev) / denum;
|
|
}
|
|
|
|
/* back pass */
|
|
|
|
x_prev = d_prev;
|
|
r_x[--i] = ((float)x_prev);
|
|
|
|
while (--i >= 0) {
|
|
x_prev = d1[i] - c1[i] * x_prev;
|
|
r_x[i] = ((float)x_prev);
|
|
}
|
|
|
|
MEM_freeN(c1);
|
|
|
|
return isfinite(x_prev);
|
|
}
|
|
|
|
bool BLI_tridiagonal_solve_cyclic(
|
|
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
|
|
{
|
|
if (count < 1) {
|
|
return false;
|
|
}
|
|
|
|
/* Degenerate case not handled correctly by the generic formula. */
|
|
if (count == 1) {
|
|
r_x[0] = d[0] / (a[0] + b[0] + c[0]);
|
|
|
|
return isfinite(r_x[0]);
|
|
}
|
|
|
|
/* Degenerate case that works but can be simplified. */
|
|
if (count == 2) {
|
|
const float a2[2] = {0, a[1] + c[1]};
|
|
const float c2[2] = {a[0] + c[0], 0};
|
|
|
|
return BLI_tridiagonal_solve(a2, b, c2, d, r_x, count);
|
|
}
|
|
|
|
/* If not really cyclic, fall back to the simple solver. */
|
|
float a0 = a[0], cN = c[count - 1];
|
|
|
|
if (a0 == 0.0f && cN == 0.0f) {
|
|
return BLI_tridiagonal_solve(a, b, c, d, r_x, count);
|
|
}
|
|
|
|
size_t bytes = sizeof(float) * (uint)count;
|
|
float *tmp = (float *)MEM_mallocN(bytes * 2, "tridiagonal_ex");
|
|
float *b2 = tmp + count;
|
|
|
|
if (!tmp) {
|
|
return false;
|
|
}
|
|
|
|
/* Prepare the non-cyclic system; relies on tridiagonal_solve ignoring values. */
|
|
memcpy(b2, b, bytes);
|
|
b2[0] -= a0;
|
|
b2[count - 1] -= cN;
|
|
|
|
memset(tmp, 0, bytes);
|
|
tmp[0] = a0;
|
|
tmp[count - 1] = cN;
|
|
|
|
/* solve for partial solution and adjustment vector */
|
|
bool success = BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
|
|
BLI_tridiagonal_solve(a, b2, c, d, r_x, count);
|
|
|
|
/* apply adjustment */
|
|
if (success) {
|
|
float coeff = (r_x[0] + r_x[count - 1]) / (1.0f + tmp[0] + tmp[count - 1]);
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
r_x[i] -= coeff * tmp[i];
|
|
}
|
|
}
|
|
|
|
MEM_freeN(tmp);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
|
|
Newton3D_JacobianFunc func_jacobian,
|
|
Newton3D_CorrectionFunc func_correction,
|
|
void *userdata,
|
|
float epsilon,
|
|
int max_iterations,
|
|
bool trace,
|
|
const float x_init[3],
|
|
float result[3])
|
|
{
|
|
float fdelta[3], fdeltav, next_fdeltav;
|
|
float jacobian[3][3], step[3], x[3], x_next[3];
|
|
|
|
epsilon *= epsilon;
|
|
|
|
copy_v3_v3(x, x_init);
|
|
|
|
func_delta(userdata, x, fdelta);
|
|
fdeltav = len_squared_v3(fdelta);
|
|
|
|
if (trace) {
|
|
printf("START (%g, %g, %g) %g %g\n", x[0], x[1], x[2], fdeltav, epsilon);
|
|
}
|
|
|
|
for (int i = 0; i == 0 || (i < max_iterations && fdeltav > epsilon); i++) {
|
|
/* Newton's method step. */
|
|
func_jacobian(userdata, x, jacobian);
|
|
|
|
if (!invert_m3(jacobian)) {
|
|
return false;
|
|
}
|
|
|
|
mul_v3_m3v3(step, jacobian, fdelta);
|
|
sub_v3_v3v3(x_next, x, step);
|
|
|
|
/* Custom out-of-bounds value correction. */
|
|
if (func_correction) {
|
|
if (trace) {
|
|
printf("%3d * (%g, %g, %g)\n", i, x_next[0], x_next[1], x_next[2]);
|
|
}
|
|
|
|
if (!func_correction(userdata, x, step, x_next)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
func_delta(userdata, x_next, fdelta);
|
|
next_fdeltav = len_squared_v3(fdelta);
|
|
|
|
if (trace) {
|
|
printf("%3d ? (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
|
|
}
|
|
|
|
/* Line search correction. */
|
|
while (next_fdeltav > fdeltav && next_fdeltav > epsilon) {
|
|
float g0 = sqrtf(fdeltav), g1 = sqrtf(next_fdeltav);
|
|
float g01 = -g0 / len_v3(step);
|
|
float det = 2.0f * (g1 - g0 - g01);
|
|
float l = (det == 0.0f) ? 0.1f : -g01 / det;
|
|
CLAMP_MIN(l, 0.1f);
|
|
|
|
mul_v3_fl(step, l);
|
|
sub_v3_v3v3(x_next, x, step);
|
|
|
|
func_delta(userdata, x_next, fdelta);
|
|
next_fdeltav = len_squared_v3(fdelta);
|
|
|
|
if (trace) {
|
|
printf("%3d . (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
|
|
}
|
|
}
|
|
|
|
copy_v3_v3(x, x_next);
|
|
fdeltav = next_fdeltav;
|
|
}
|
|
|
|
bool success = (fdeltav <= epsilon);
|
|
|
|
if (trace) {
|
|
printf("%s (%g, %g, %g) %g\n", success ? "OK " : "FAIL", x[0], x[1], x[2], fdeltav);
|
|
}
|
|
|
|
copy_v3_v3(result, x);
|
|
return success;
|
|
}
|