Files
test/source/blender/compositor/operations/COM_MapUVOperation.cc
Habib Gahbiche 9cc038f580 Fullframe compositor: unify behavior of size inference with realtime-compositor
Make size inference consistent with the viewport compositor (from a user's perspective). This patch uses constat folding to create a constant output out of constant inputs. This is consistent with the results of the realtime compositor.

Nodes not included in this patch require further refactoring or discussion. They will be addressed in future patches.

Pull Request: https://projects.blender.org/blender/blender/pulls/114755
2023-11-26 12:14:35 +01:00

258 lines
7.3 KiB
C++

/* SPDX-FileCopyrightText: 2011 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include "COM_MapUVOperation.h"
namespace blender::compositor {
MapUVOperation::MapUVOperation()
{
this->add_input_socket(DataType::Color, ResizeMode::Align);
this->add_input_socket(DataType::Vector);
this->add_output_socket(DataType::Color);
alpha_ = 0.0f;
flags_.complex = true;
flags_.can_be_constant = true;
set_canvas_input_index(UV_INPUT_INDEX);
inputUVProgram_ = nullptr;
input_color_program_ = nullptr;
}
void MapUVOperation::init_data()
{
NodeOperation *image_input = get_input_operation(IMAGE_INPUT_INDEX);
image_width_ = image_input->get_width();
image_height_ = image_input->get_height();
NodeOperation *uv_input = get_input_operation(UV_INPUT_INDEX);
uv_width_ = uv_input->get_width();
uv_height_ = uv_input->get_height();
}
void MapUVOperation::init_execution()
{
input_color_program_ = this->get_input_socket_reader(0);
inputUVProgram_ = this->get_input_socket_reader(1);
if (execution_model_ == eExecutionModel::Tiled) {
uv_input_read_fn_ = [=](float x, float y, float *out) {
inputUVProgram_->read_sampled(out, x, y, PixelSampler::Bilinear);
};
}
}
void MapUVOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler /*sampler*/)
{
float xy[2] = {x, y};
float uv[2], deriv[2][2], alpha;
pixel_transform(xy, uv, deriv, alpha);
if (alpha == 0.0f) {
zero_v4(output);
return;
}
/* EWA filtering */
input_color_program_->read_filtered(output, uv[0], uv[1], deriv[0], deriv[1]);
/* UV to alpha threshold */
const float threshold = alpha_ * 0.05f;
/* XXX alpha threshold is used to fade out pixels on boundaries with invalid derivatives.
* this calculation is not very well defined, should be looked into if it becomes a problem ...
*/
float du = len_v2(deriv[0]);
float dv = len_v2(deriv[1]);
float factor = 1.0f - threshold * (du / input_color_program_->get_width() +
dv / input_color_program_->get_height());
if (factor < 0.0f) {
alpha = 0.0f;
}
else {
alpha *= factor;
}
/* "premul" */
if (alpha < 1.0f) {
mul_v4_fl(output, alpha);
}
}
bool MapUVOperation::read_uv(float x, float y, float &r_u, float &r_v, float &r_alpha)
{
if (x < 0.0f || x >= uv_width_ || y < 0.0f || y >= uv_height_) {
r_u = 0.0f;
r_v = 0.0f;
r_alpha = 0.0f;
return false;
}
float vector[3];
uv_input_read_fn_(x, y, vector);
r_u = vector[0] * image_width_;
r_v = vector[1] * image_height_;
r_alpha = vector[2];
return true;
}
void MapUVOperation::pixel_transform(const float xy[2],
float r_uv[2],
float r_deriv[2][2],
float &r_alpha)
{
float uv[2], alpha; /* temporary variables for derivative estimation */
int num;
read_uv(xy[0], xy[1], r_uv[0], r_uv[1], r_alpha);
/* Estimate partial derivatives using 1-pixel offsets */
const float epsilon[2] = {1.0f, 1.0f};
zero_v2(r_deriv[0]);
zero_v2(r_deriv[1]);
num = 0;
if (read_uv(xy[0] + epsilon[0], xy[1], uv[0], uv[1], alpha)) {
r_deriv[0][0] += uv[0] - r_uv[0];
r_deriv[1][0] += uv[1] - r_uv[1];
num++;
}
if (read_uv(xy[0] - epsilon[0], xy[1], uv[0], uv[1], alpha)) {
r_deriv[0][0] += r_uv[0] - uv[0];
r_deriv[1][0] += r_uv[1] - uv[1];
num++;
}
if (num > 0) {
float numinv = 1.0f / float(num);
r_deriv[0][0] *= numinv;
r_deriv[1][0] *= numinv;
}
num = 0;
if (read_uv(xy[0], xy[1] + epsilon[1], uv[0], uv[1], alpha)) {
r_deriv[0][1] += uv[0] - r_uv[0];
r_deriv[1][1] += uv[1] - r_uv[1];
num++;
}
if (read_uv(xy[0], xy[1] - epsilon[1], uv[0], uv[1], alpha)) {
r_deriv[0][1] += r_uv[0] - uv[0];
r_deriv[1][1] += r_uv[1] - uv[1];
num++;
}
if (num > 0) {
float numinv = 1.0f / float(num);
r_deriv[0][1] *= numinv;
r_deriv[1][1] *= numinv;
}
}
void MapUVOperation::deinit_execution()
{
inputUVProgram_ = nullptr;
input_color_program_ = nullptr;
}
bool MapUVOperation::determine_depending_area_of_interest(rcti *input,
ReadBufferOperation *read_operation,
rcti *output)
{
rcti color_input;
rcti uv_input;
NodeOperation *operation = nullptr;
/* the uv buffer only needs a 3x3 buffer. The image needs whole buffer */
operation = get_input_operation(0);
color_input.xmax = operation->get_width();
color_input.xmin = 0;
color_input.ymax = operation->get_height();
color_input.ymin = 0;
if (operation->determine_depending_area_of_interest(&color_input, read_operation, output)) {
return true;
}
operation = get_input_operation(1);
uv_input.xmax = input->xmax + 1;
uv_input.xmin = input->xmin - 1;
uv_input.ymax = input->ymax + 1;
uv_input.ymin = input->ymin - 1;
if (operation->determine_depending_area_of_interest(&uv_input, read_operation, output)) {
return true;
}
return false;
}
void MapUVOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
switch (input_idx) {
case IMAGE_INPUT_INDEX: {
r_input_area = get_input_operation(IMAGE_INPUT_INDEX)->get_canvas();
break;
}
case UV_INPUT_INDEX: {
r_input_area = output_area;
expand_area_for_sampler(r_input_area, PixelSampler::Bilinear);
break;
}
}
}
void MapUVOperation::update_memory_buffer_started(MemoryBuffer * /*output*/,
const rcti & /*area*/,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *uv_input = inputs[UV_INPUT_INDEX];
uv_input_read_fn_ = [=](float x, float y, float *out) {
uv_input->read_elem_bilinear(x, y, out);
};
}
void MapUVOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input_image = inputs[IMAGE_INPUT_INDEX];
for (BuffersIterator<float> it = output->iterate_with({}, area); !it.is_end(); ++it) {
float xy[2] = {float(it.x), float(it.y)};
float uv[2];
float deriv[2][2];
float alpha;
pixel_transform(xy, uv, deriv, alpha);
if (alpha == 0.0f) {
zero_v4(it.out);
continue;
}
/* EWA filtering. */
input_image->read_elem_filtered(uv[0], uv[1], deriv[0], deriv[1], it.out);
/* UV to alpha threshold. */
const float threshold = alpha_ * 0.05f;
/* XXX alpha threshold is used to fade out pixels on boundaries with invalid derivatives.
* this calculation is not very well defined, should be looked into if it becomes a problem ...
*/
const float du = len_v2(deriv[0]);
const float dv = len_v2(deriv[1]);
const float factor = 1.0f - threshold * (du / image_width_ + dv / image_height_);
if (factor < 0.0f) {
alpha = 0.0f;
}
else {
alpha *= factor;
}
/* "premul" */
if (alpha < 1.0f) {
mul_v4_fl(it.out, alpha);
}
}
}
} // namespace blender::compositor