Files
test/source/blender/compositor/operations/COM_TransformOperation.cc
Habib Gahbiche 9cc038f580 Fullframe compositor: unify behavior of size inference with realtime-compositor
Make size inference consistent with the viewport compositor (from a user's perspective). This patch uses constat folding to create a constant output out of constant inputs. This is consistent with the results of the realtime compositor.

Nodes not included in this patch require further refactoring or discussion. They will be addressed in future patches.

Pull Request: https://projects.blender.org/blender/blender/pulls/114755
2023-11-26 12:14:35 +01:00

220 lines
8.7 KiB
C++

/* SPDX-FileCopyrightText: 2021 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include "COM_TransformOperation.h"
#include "BLI_math_rotation.h"
#include "COM_RotateOperation.h"
#include "COM_ScaleOperation.h"
namespace blender::compositor {
TransformOperation::TransformOperation()
{
add_input_socket(DataType::Color, ResizeMode::None);
add_input_socket(DataType::Value, ResizeMode::None);
add_input_socket(DataType::Value, ResizeMode::None);
add_input_socket(DataType::Value, ResizeMode::None);
add_input_socket(DataType::Value, ResizeMode::None);
add_output_socket(DataType::Color);
translate_factor_x_ = 1.0f;
translate_factor_y_ = 1.0f;
convert_degree_to_rad_ = false;
sampler_ = PixelSampler::Bilinear;
invert_ = false;
max_scale_canvas_size_ = {ScaleOperation::DEFAULT_MAX_SCALE_CANVAS_SIZE,
ScaleOperation::DEFAULT_MAX_SCALE_CANVAS_SIZE};
flags_.can_be_constant = true;
}
void TransformOperation::set_scale_canvas_max_size(Size2f size)
{
max_scale_canvas_size_ = size;
}
void TransformOperation::init_data()
{
translate_x_ = get_input_operation(X_INPUT_INDEX)->get_constant_value_default(0.0f) *
translate_factor_x_;
translate_y_ = get_input_operation(Y_INPUT_INDEX)->get_constant_value_default(0.0f) *
translate_factor_y_;
const float degree = get_input_operation(DEGREE_INPUT_INDEX)->get_constant_value_default(0.0f);
const double rad = convert_degree_to_rad_ ? DEG2RAD(double(degree)) : degree;
rotate_cosine_ = cos(rad);
rotate_sine_ = sin(rad);
scale_ = get_input_operation(SCALE_INPUT_INDEX)->get_constant_value_default(1.0f);
}
void TransformOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
switch (input_idx) {
case IMAGE_INPUT_INDEX: {
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
const rcti &image_canvas = image_op->get_canvas();
if (invert_) {
/* Scale -> Rotate -> Translate. */
r_input_area = output_area;
BLI_rcti_translate(&r_input_area, -translate_x_, -translate_y_);
RotateOperation::get_rotation_area_of_interest(scale_canvas_,
rotate_canvas_,
rotate_sine_,
rotate_cosine_,
r_input_area,
r_input_area);
ScaleOperation::get_scale_area_of_interest(
image_canvas, scale_canvas_, scale_, scale_, r_input_area, r_input_area);
}
else {
/* Translate -> Rotate -> Scale. */
ScaleOperation::get_scale_area_of_interest(
rotate_canvas_, scale_canvas_, scale_, scale_, output_area, r_input_area);
RotateOperation::get_rotation_area_of_interest(translate_canvas_,
rotate_canvas_,
rotate_sine_,
rotate_cosine_,
r_input_area,
r_input_area);
BLI_rcti_translate(&r_input_area, -translate_x_, -translate_y_);
}
expand_area_for_sampler(r_input_area, sampler_);
break;
}
case X_INPUT_INDEX:
case Y_INPUT_INDEX:
case DEGREE_INPUT_INDEX:
case SCALE_INPUT_INDEX: {
r_input_area = COM_CONSTANT_INPUT_AREA_OF_INTEREST;
break;
}
}
}
void TransformOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input_img = inputs[IMAGE_INPUT_INDEX];
BuffersIterator<float> it = output->iterate_with({}, area);
if (invert_) {
transform_inverted(it, input_img);
}
else {
transform(it, input_img);
}
}
void TransformOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
const bool image_determined =
get_input_socket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
if (image_determined) {
rcti image_canvas = r_area;
rcti unused = COM_AREA_NONE;
get_input_socket(X_INPUT_INDEX)->determine_canvas(image_canvas, unused);
get_input_socket(Y_INPUT_INDEX)->determine_canvas(image_canvas, unused);
get_input_socket(DEGREE_INPUT_INDEX)->determine_canvas(image_canvas, unused);
get_input_socket(SCALE_INPUT_INDEX)->determine_canvas(image_canvas, unused);
init_data();
if (invert_) {
/* Scale -> Rotate -> Translate. */
scale_canvas_ = image_canvas;
ScaleOperation::scale_area(scale_canvas_, scale_, scale_);
const Size2f max_scale_size = {
MAX2(BLI_rcti_size_x(&image_canvas), max_scale_canvas_size_.x),
MAX2(BLI_rcti_size_y(&image_canvas), max_scale_canvas_size_.y)};
ScaleOperation::clamp_area_size_max(scale_canvas_, max_scale_size);
RotateOperation::get_rotation_canvas(
scale_canvas_, rotate_sine_, rotate_cosine_, rotate_canvas_);
translate_canvas_ = rotate_canvas_;
BLI_rcti_translate(&translate_canvas_, translate_x_, translate_y_);
r_area = translate_canvas_;
}
else {
/* Translate -> Rotate -> Scale. */
translate_canvas_ = image_canvas;
BLI_rcti_translate(&translate_canvas_, translate_x_, translate_y_);
RotateOperation::get_rotation_canvas(
translate_canvas_, rotate_sine_, rotate_cosine_, rotate_canvas_);
scale_canvas_ = rotate_canvas_;
ScaleOperation::scale_area(scale_canvas_, scale_, scale_);
const Size2f max_scale_size = {
MAX2(BLI_rcti_size_x(&rotate_canvas_), max_scale_canvas_size_.x),
MAX2(BLI_rcti_size_y(&rotate_canvas_), max_scale_canvas_size_.y)};
ScaleOperation::clamp_area_size_max(scale_canvas_, max_scale_size);
r_area = scale_canvas_;
}
}
}
void TransformOperation::transform(BuffersIterator<float> &it, const MemoryBuffer *input_img)
{
float rotate_center_x, rotate_center_y;
RotateOperation::get_rotation_center(translate_canvas_, rotate_center_x, rotate_center_y);
float rotate_offset_x, rotate_offset_y;
RotateOperation::get_rotation_offset(
translate_canvas_, rotate_canvas_, rotate_offset_x, rotate_offset_y);
const float scale_center_x = BLI_rcti_size_x(&rotate_canvas_) / 2.0f;
const float scale_center_y = BLI_rcti_size_y(&rotate_canvas_) / 2.0f;
float scale_offset_x, scale_offset_y;
ScaleOperation::get_scale_offset(rotate_canvas_, scale_canvas_, scale_offset_x, scale_offset_y);
for (; !it.is_end(); ++it) {
float x = ScaleOperation::scale_coord_inverted(it.x + scale_offset_x, scale_center_x, scale_);
float y = ScaleOperation::scale_coord_inverted(it.y + scale_offset_y, scale_center_y, scale_);
x = rotate_offset_x + x;
y = rotate_offset_y + y;
RotateOperation::rotate_coords(
x, y, rotate_center_x, rotate_center_y, rotate_sine_, rotate_cosine_);
input_img->read_elem_sampled(x - translate_x_, y - translate_y_, sampler_, it.out);
}
}
void TransformOperation::transform_inverted(BuffersIterator<float> &it,
const MemoryBuffer *input_img)
{
const rcti &image_canvas = get_input_operation(IMAGE_INPUT_INDEX)->get_canvas();
const float scale_center_x = BLI_rcti_size_x(&image_canvas) / 2.0f - translate_x_;
const float scale_center_y = BLI_rcti_size_y(&image_canvas) / 2.0f - translate_y_;
float scale_offset_x, scale_offset_y;
ScaleOperation::get_scale_offset(image_canvas, scale_canvas_, scale_offset_x, scale_offset_y);
float rotate_center_x, rotate_center_y;
RotateOperation::get_rotation_center(translate_canvas_, rotate_center_x, rotate_center_y);
rotate_center_x -= translate_x_;
rotate_center_y -= translate_y_;
float rotate_offset_x, rotate_offset_y;
RotateOperation::get_rotation_offset(
scale_canvas_, rotate_canvas_, rotate_offset_x, rotate_offset_y);
for (; !it.is_end(); ++it) {
float x = rotate_offset_x + (it.x - translate_x_);
float y = rotate_offset_y + (it.y - translate_y_);
RotateOperation::rotate_coords(
x, y, rotate_center_x, rotate_center_y, rotate_sine_, rotate_cosine_);
x = ScaleOperation::scale_coord_inverted(x + scale_offset_x, scale_center_x, scale_);
y = ScaleOperation::scale_coord_inverted(y + scale_offset_y, scale_center_y, scale_);
input_img->read_elem_sampled(x, y, sampler_, it.out);
}
}
} // namespace blender::compositor