Files
test/source/blender/freestyle/intern/blender_interface/BlenderFileLoader.cpp
Hans Goudey 89e3ba4e25 Mesh: Replace auto smooth with node group
Design task: #93551

This PR replaces the auto smooth option with a geometry nodes modifier
that sets the sharp edge attribute. This solves a fair number of long-
standing problems related to auto smooth, simplifies the process of
normal computation, and allows Blender to automatically choose between
face, vertex, and face corner normals based on the sharp edge and face
attributes.

Versioning adds a geometry node group to objects with meshes that had
auto-smooth enabled. The modifier can be applied, which also improves
performance.

Auto smooth is now unnecessary to get a combination of sharp and smooth
edges. In general workflows are changed a bit. Separate procedural and
destructive workflows are available. Custom normals can be used
immediately without turning on the removed auto smooth option.

**Procedural**

The node group asset "Smooth by Angle" is the main way to set sharp
normals based on the edge angle. It can be accessed directly in the add
modifier menu. Of course the modifier can be reordered, muted, or
applied like any other, or changed internally like any geometry nodes
modifier.

**Destructive**
Often the sharp edges don't need to be dynamic. This can give better
performance since edge angles don't need to be recalculated. In edit
mode the two operators "Select Sharp Edges" and "Mark Sharp" can be
used. In other modes, the "Shade Smooth by Angle" controls the edge
sharpness directly.

### Breaking API Changes
- `use_auto_smooth` is removed. Face corner normals are now used
  automatically   if there are mixed smooth vs. not smooth tags. Meshes
  now always use custom normals if they exist.
- In Cycles, the lack of the separate auto smooth state makes normals look
  triangulated when all faces are shaded smooth.
- `auto_smooth_angle` is removed. Replaced by a modifier (or operator)
  controlling the sharp edge attribute. This means the mesh itself
  (without an object) doesn't know anything about automatically smoothing
  by angle anymore.
- `create_normals_split`, `calc_normals_split`, and `free_normals_split`
  are removed, and are replaced by the simpler `Mesh.corner_normals`
  collection property. Since it gives access to the normals cache, it
  is automatically updated when relevant data changes.

Addons are updated here: https://projects.blender.org/blender/blender-addons/pulls/104609

### Tests
- `geo_node_curves_test_deform_curves_on_surface` has slightly different
   results because face corner normals are used instead of interpolated
   vertex normals.
- `bf_wavefront_obj_tests` has different export results for one file
  which mixed sharp and smooth faces without turning on auto smooth.
- `cycles_mesh_cpu` has one object which is completely flat shaded.
  Previously every edge was split before rendering, now it looks triangulated.

Pull Request: https://projects.blender.org/blender/blender/pulls/108014
2023-10-20 16:54:08 +02:00

813 lines
23 KiB
C++

/* SPDX-FileCopyrightText: 2008-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup freestyle
*/
#include "BlenderFileLoader.h"
#include "BLI_math_geom.h"
#include "BLI_math_matrix.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "BKE_attribute.hh"
#include "BKE_global.h"
#include "BKE_mesh.hh"
#include "BKE_object.hh"
#include <sstream>
using blender::float3;
using blender::Span;
namespace Freestyle {
BlenderFileLoader::BlenderFileLoader(Render *re, ViewLayer *view_layer, Depsgraph *depsgraph)
{
_re = re;
_depsgraph = depsgraph;
_Scene = nullptr;
_numFacesRead = 0;
#if 0
_minEdgeSize = DBL_MAX;
#endif
_smooth = (view_layer->freestyle_config.flags & FREESTYLE_FACE_SMOOTHNESS_FLAG) != 0;
_pRenderMonitor = nullptr;
}
BlenderFileLoader::~BlenderFileLoader()
{
_Scene = nullptr;
}
NodeGroup *BlenderFileLoader::Load()
{
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "\n=== Importing triangular meshes into Blender ===" << endl;
}
// creation of the scene root node
_Scene = new NodeGroup;
if (_re->clip_start < 0.0f) {
// Adjust clipping start/end and set up a Z offset when the viewport preview
// is used with the orthographic view. In this case, _re->clip_start is negative,
// while Freestyle assumes that imported mesh data are in the camera coordinate
// system with the view point located at origin [bug #36009].
_z_near = -0.001f;
_z_offset = _re->clip_start + _z_near;
_z_far = -_re->clip_end + _z_offset;
}
else {
_z_near = -_re->clip_start;
_z_far = -_re->clip_end;
_z_offset = 0.0f;
}
int id = 0;
const eEvaluationMode eval_mode = DEG_get_mode(_depsgraph);
DEGObjectIterSettings deg_iter_settings{};
deg_iter_settings.depsgraph = _depsgraph;
deg_iter_settings.flags = DEG_ITER_OBJECT_FLAG_LINKED_DIRECTLY |
DEG_ITER_OBJECT_FLAG_LINKED_VIA_SET | DEG_ITER_OBJECT_FLAG_VISIBLE |
DEG_ITER_OBJECT_FLAG_DUPLI;
DEG_OBJECT_ITER_BEGIN (&deg_iter_settings, ob) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
if ((ob->base_flag & (BASE_HOLDOUT | BASE_INDIRECT_ONLY)) ||
(ob->visibility_flag & OB_HOLDOUT)) {
continue;
}
if (!(BKE_object_visibility(ob, eval_mode) & OB_VISIBLE_SELF)) {
continue;
}
/* Evaluated metaballs will appear as mesh objects in the iterator. */
if (ob->type == OB_MBALL) {
continue;
}
Mesh *mesh = BKE_object_to_mesh(nullptr, ob, false);
if (mesh) {
insertShapeNode(ob, mesh, ++id);
BKE_object_to_mesh_clear(ob);
}
}
DEG_OBJECT_ITER_END;
// Return the built scene.
return _Scene;
}
#define CLIPPED_BY_NEAR -1
#define NOT_CLIPPED 0
#define CLIPPED_BY_FAR 1
// check if each vertex of a triangle (V1, V2, V3) is clipped by the near/far plane
// and calculate the number of triangles to be generated by clipping
int BlenderFileLoader::countClippedFaces(float v1[3], float v2[3], float v3[3], int clip[3])
{
float *v[3];
int numClipped, sum, numTris = 0;
v[0] = v1;
v[1] = v2;
v[2] = v3;
numClipped = sum = 0;
for (int i = 0; i < 3; i++) {
if (v[i][2] > _z_near) {
clip[i] = CLIPPED_BY_NEAR;
numClipped++;
}
else if (v[i][2] < _z_far) {
clip[i] = CLIPPED_BY_FAR;
numClipped++;
}
else {
clip[i] = NOT_CLIPPED;
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
printf("%d %s\n",
i,
(clip[i] == NOT_CLIPPED) ? "not" :
(clip[i] == CLIPPED_BY_NEAR) ? "near" :
"far");
}
#endif
sum += clip[i];
}
switch (numClipped) {
case 0:
numTris = 1; // triangle
break;
case 1:
numTris = 2; // tetragon
break;
case 2:
if (sum == 0) {
numTris = 3; // pentagon
}
else {
numTris = 1; // triangle
}
break;
case 3:
if (ELEM(sum, 3, -3)) {
numTris = 0;
}
else {
numTris = 2; // tetragon
}
break;
}
return numTris;
}
// find the intersection point C between the line segment from V1 to V2 and
// a clipping plane at depth Z (i.e., the Z component of C is known, while
// the X and Y components are unknown).
void BlenderFileLoader::clipLine(float v1[3], float v2[3], float c[3], float z)
{
// Order v1 and v2 by Z values to make sure that clipLine(P, Q, c, z)
// and clipLine(Q, P, c, z) gives exactly the same numerical result.
float *p, *q;
if (v1[2] < v2[2]) {
p = v1;
q = v2;
}
else {
p = v2;
q = v1;
}
double d[3];
for (int i = 0; i < 3; i++) {
d[i] = q[i] - p[i];
}
double t = (z - p[2]) / d[2];
c[0] = p[0] + t * d[0];
c[1] = p[1] + t * d[1];
c[2] = z;
}
// clip the triangle (V1, V2, V3) by the near and far clipping plane and
// obtain a set of vertices after the clipping. The number of vertices
// is at most 5.
void BlenderFileLoader::clipTriangle(int numTris,
float triCoords[][3],
float v1[3],
float v2[3],
float v3[3],
float triNormals[][3],
float n1[3],
float n2[3],
float n3[3],
bool edgeMarks[5],
bool em1,
bool em2,
bool em3,
const int clip[3])
{
float *v[3], *n[3];
bool em[3];
int i, j, k;
v[0] = v1;
n[0] = n1;
v[1] = v2;
n[1] = n2;
v[2] = v3;
n[2] = n3;
em[0] = em1; /* edge mark of the edge between v1 and v2 */
em[1] = em2; /* edge mark of the edge between v2 and v3 */
em[2] = em3; /* edge mark of the edge between v3 and v1 */
k = 0;
for (i = 0; i < 3; i++) {
j = (i + 1) % 3;
if (clip[i] == NOT_CLIPPED) {
copy_v3_v3(triCoords[k], v[i]);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
if (clip[j] != NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
else if (clip[i] != clip[j]) {
if (clip[j] == NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
}
else {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
}
BLI_assert(k == 2 + numTris);
(void)numTris; /* Ignored in release builds. */
}
void BlenderFileLoader::addTriangle(LoaderState *ls,
float v1[3],
float v2[3],
float v3[3],
float n1[3],
float n2[3],
float n3[3],
bool fm,
bool em1,
bool em2,
bool em3)
{
float *fv[3], *fn[3];
#if 0
float len;
#endif
uint i, j;
IndexedFaceSet::FaceEdgeMark marks = 0;
// initialize the bounding box by the first vertex
if (ls->currentIndex == 0) {
copy_v3_v3(ls->minBBox, v1);
copy_v3_v3(ls->maxBBox, v1);
}
fv[0] = v1;
fn[0] = n1;
fv[1] = v2;
fn[1] = n2;
fv[2] = v3;
fn[2] = n3;
for (i = 0; i < 3; i++) {
copy_v3_v3(ls->pv, fv[i]);
copy_v3_v3(ls->pn, fn[i]);
// update the bounding box
for (j = 0; j < 3; j++) {
if (ls->minBBox[j] > ls->pv[j]) {
ls->minBBox[j] = ls->pv[j];
}
if (ls->maxBBox[j] < ls->pv[j]) {
ls->maxBBox[j] = ls->pv[j];
}
}
#if 0
len = len_v3v3(fv[i], fv[(i + 1) % 3]);
if (_minEdgeSize > len) {
_minEdgeSize = len;
}
#endif
*ls->pvi = ls->currentIndex;
*ls->pni = ls->currentIndex;
*ls->pmi = ls->currentMIndex;
ls->currentIndex += 3;
ls->pv += 3;
ls->pn += 3;
ls->pvi++;
ls->pni++;
ls->pmi++;
}
if (fm) {
marks |= IndexedFaceSet::FACE_MARK;
}
if (em1) {
marks |= IndexedFaceSet::EDGE_MARK_V1V2;
}
if (em2) {
marks |= IndexedFaceSet::EDGE_MARK_V2V3;
}
if (em3) {
marks |= IndexedFaceSet::EDGE_MARK_V3V1;
}
*(ls->pm++) = marks;
}
// With A, B and P indicating the three vertices of a given triangle, returns:
// 1 if points A and B are in the same position in the 3D space;
// 2 if the distance between point P and line segment AB is zero; and
// zero otherwise.
int BlenderFileLoader::testDegenerateTriangle(float v1[3], float v2[3], float v3[3])
{
const float eps = 1.0e-6;
const float eps_sq = eps * eps;
#if 0
float area = area_tri_v3(v1, v2, v3);
bool verbose = (area < 1.0e-6);
#endif
if (equals_v3v3(v1, v2) || equals_v3v3(v2, v3) || equals_v3v3(v1, v3)) {
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 1\n");
}
#endif
return 1;
}
if (dist_squared_to_line_segment_v3(v1, v2, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v2, v1, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v3, v1, v2) < eps_sq)
{
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 2\n");
}
#endif
return 2;
}
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 0\n");
}
#endif
return 0;
}
static bool testEdgeMark(Mesh *me, const FreestyleEdge *fed, const MLoopTri *lt, int i)
{
const Span<blender::int2> edges = me->edges();
const Span<int> corner_verts = me->corner_verts();
const Span<int> corner_edges = me->corner_edges();
const int corner = lt->tri[i];
const int corner_next = lt->tri[(i + 1) % 3];
const blender::int2 &edge = edges[corner_edges[corner]];
if (!ELEM(corner_verts[corner_next], edge[0], edge[1])) {
/* Not an edge in the original mesh before triangulation. */
return false;
}
return (fed[corner_edges[corner]].flag & FREESTYLE_EDGE_MARK) != 0;
}
void BlenderFileLoader::insertShapeNode(Object *ob, Mesh *me, int id)
{
using namespace blender;
char *name = ob->id.name + 2;
const Span<float3> vert_positions = me->vert_positions();
const OffsetIndices mesh_polys = me->faces();
const Span<int> corner_verts = me->corner_verts();
// Compute loop triangles
int tottri = poly_to_tri_count(me->faces_num, me->totloop);
MLoopTri *mlooptri = (MLoopTri *)MEM_malloc_arrayN(tottri, sizeof(*mlooptri), __func__);
blender::bke::mesh::looptris_calc(vert_positions, mesh_polys, corner_verts, {mlooptri, tottri});
const blender::Span<int> looptri_faces = me->looptri_faces();
const blender::Span<blender::float3> lnors = me->corner_normals();
// Get other mesh data
const FreestyleEdge *fed = (const FreestyleEdge *)CustomData_get_layer(&me->edge_data,
CD_FREESTYLE_EDGE);
const FreestyleFace *ffa = (const FreestyleFace *)CustomData_get_layer(&me->face_data,
CD_FREESTYLE_FACE);
// Compute view matrix
Object *ob_camera_eval = DEG_get_evaluated_object(_depsgraph, RE_GetCamera(_re));
float viewinv[4][4], viewmat[4][4];
RE_GetCameraModelMatrix(_re, ob_camera_eval, viewinv);
invert_m4_m4(viewmat, viewinv);
// Compute matrix including camera transform
float obmat[4][4], nmat[4][4];
mul_m4_m4m4(obmat, viewmat, ob->object_to_world);
invert_m4_m4(nmat, obmat);
transpose_m4(nmat);
// We count the number of triangles after the clipping by the near and far view
// planes is applied (NOTE: mesh vertices are in the camera coordinate system).
uint numFaces = 0;
float v1[3], v2[3], v3[3];
float n1[3], n2[3], n3[3], facenormal[3];
int clip[3];
for (int a = 0; a < tottri; a++) {
const MLoopTri *lt = &mlooptri[a];
copy_v3_v3(v1, vert_positions[corner_verts[lt->tri[0]]]);
copy_v3_v3(v2, vert_positions[corner_verts[lt->tri[1]]]);
copy_v3_v3(v3, vert_positions[corner_verts[lt->tri[2]]]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
numFaces += countClippedFaces(v1, v2, v3, clip);
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "numFaces " << numFaces << endl;
}
#endif
if (numFaces == 0) {
MEM_freeN(mlooptri);
return;
}
// We allocate memory for the meshes to be imported
NodeGroup *currentMesh = new NodeGroup;
NodeShape *shape = new NodeShape;
uint vSize = 3 * 3 * numFaces;
float *vertices = new float[vSize];
uint nSize = vSize;
float *normals = new float[nSize];
uint *numVertexPerFaces = new uint[numFaces];
vector<Material *> meshMaterials;
vector<FrsMaterial> meshFrsMaterials;
IndexedFaceSet::TRIANGLES_STYLE *faceStyle = new IndexedFaceSet::TRIANGLES_STYLE[numFaces];
uint i;
for (i = 0; i < numFaces; i++) {
faceStyle[i] = IndexedFaceSet::TRIANGLES;
numVertexPerFaces[i] = 3;
}
IndexedFaceSet::FaceEdgeMark *faceEdgeMarks = new IndexedFaceSet::FaceEdgeMark[numFaces];
uint viSize = 3 * numFaces;
uint *VIndices = new uint[viSize];
uint niSize = viSize;
uint *NIndices = new uint[niSize];
uint *MIndices = new uint[viSize]; // Material Indices
LoaderState ls;
ls.pv = vertices;
ls.pn = normals;
ls.pm = faceEdgeMarks;
ls.pvi = VIndices;
ls.pni = NIndices;
ls.pmi = MIndices;
ls.currentIndex = 0;
ls.currentMIndex = 0;
FrsMaterial tmpMat;
const bke::AttributeAccessor attributes = me->attributes();
const VArray<int> material_indices = *attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
const VArray<bool> sharp_faces = *attributes.lookup_or_default<bool>(
"sharp_face", ATTR_DOMAIN_FACE, false);
// We parse the vlak nodes again and import meshes while applying the clipping
// by the near and far view planes.
for (int a = 0; a < tottri; a++) {
const MLoopTri *lt = &mlooptri[a];
const int poly_i = looptri_faces[a];
Material *mat = BKE_object_material_get(ob, material_indices[poly_i] + 1);
copy_v3_v3(v1, vert_positions[corner_verts[lt->tri[0]]]);
copy_v3_v3(v2, vert_positions[corner_verts[lt->tri[1]]]);
copy_v3_v3(v3, vert_positions[corner_verts[lt->tri[2]]]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
if (_smooth && (!sharp_faces[poly_i])) {
copy_v3_v3(n1, lnors[lt->tri[0]]);
copy_v3_v3(n2, lnors[lt->tri[1]]);
copy_v3_v3(n3, lnors[lt->tri[2]]);
mul_mat3_m4_v3(nmat, n1);
mul_mat3_m4_v3(nmat, n2);
mul_mat3_m4_v3(nmat, n3);
normalize_v3(n1);
normalize_v3(n2);
normalize_v3(n3);
}
else {
normal_tri_v3(facenormal, v3, v2, v1);
copy_v3_v3(n1, facenormal);
copy_v3_v3(n2, facenormal);
copy_v3_v3(n3, facenormal);
}
uint numTris = countClippedFaces(v1, v2, v3, clip);
if (numTris == 0) {
continue;
}
bool fm = (ffa) ? (ffa[poly_i].flag & FREESTYLE_FACE_MARK) != 0 : false;
bool em1 = false, em2 = false, em3 = false;
if (fed) {
em1 = testEdgeMark(me, fed, lt, 0);
em2 = testEdgeMark(me, fed, lt, 1);
em3 = testEdgeMark(me, fed, lt, 2);
}
if (mat) {
tmpMat.setLine(mat->line_col[0], mat->line_col[1], mat->line_col[2], mat->line_col[3]);
tmpMat.setDiffuse(mat->r, mat->g, mat->b, 1.0f);
tmpMat.setSpecular(mat->specr, mat->specg, mat->specb, 1.0f);
tmpMat.setShininess(128.0f);
tmpMat.setPriority(mat->line_priority);
}
if (meshMaterials.empty()) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
shape->setFrsMaterial(tmpMat);
}
else {
// find if the Blender material is already in the list
uint i = 0;
bool found = false;
for (vector<Material *>::iterator it = meshMaterials.begin(), itend = meshMaterials.end();
it != itend;
it++, i++)
{
if (*it == mat) {
ls.currentMIndex = i;
found = true;
break;
}
}
if (!found) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
ls.currentMIndex = meshFrsMaterials.size() - 1;
}
}
float triCoords[5][3], triNormals[5][3];
bool edgeMarks[5]; // edgeMarks[i] is for the edge between i-th and (i+1)-th vertices
clipTriangle(
numTris, triCoords, v1, v2, v3, triNormals, n1, n2, n3, edgeMarks, em1, em2, em3, clip);
for (i = 0; i < numTris; i++) {
addTriangle(&ls,
triCoords[0],
triCoords[i + 1],
triCoords[i + 2],
triNormals[0],
triNormals[i + 1],
triNormals[i + 2],
fm,
(i == 0) ? edgeMarks[0] : false,
edgeMarks[i + 1],
(i == numTris - 1) ? edgeMarks[i + 2] : false);
_numFacesRead++;
}
}
MEM_freeN(mlooptri);
// We might have several times the same vertex. We want a clean
// shape with no real-vertex. Here, we are making a cleaning pass.
float *cleanVertices = nullptr;
uint cvSize;
uint *cleanVIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
vertices, vSize, VIndices, viSize, &cleanVertices, &cvSize, &cleanVIndices);
float *cleanNormals = nullptr;
uint cnSize;
uint *cleanNIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
normals, nSize, NIndices, niSize, &cleanNormals, &cnSize, &cleanNIndices);
// format materials array
FrsMaterial **marray = new FrsMaterial *[meshFrsMaterials.size()];
uint mindex = 0;
for (vector<FrsMaterial>::iterator m = meshFrsMaterials.begin(), mend = meshFrsMaterials.end();
m != mend;
++m)
{
marray[mindex] = new FrsMaterial(*m);
++mindex;
}
// deallocates memory:
delete[] vertices;
delete[] normals;
delete[] VIndices;
delete[] NIndices;
// Fix for degenerated triangles
// A degenerate triangle is a triangle such that
// 1) A and B are in the same position in the 3D space; or
// 2) the distance between point P and line segment AB is zero.
// Only those degenerate triangles in the second form are resolved here
// by adding a small offset to P, whereas those in the first form are
// addressed later in WShape::MakeFace().
vector<detri_t> detriList;
Vec3r zero(0.0, 0.0, 0.0);
uint vi0, vi1, vi2;
for (i = 0; i < viSize; i += 3) {
detri_t detri;
vi0 = cleanVIndices[i];
vi1 = cleanVIndices[i + 1];
vi2 = cleanVIndices[i + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (v0 == v1 || v0 == v2 || v1 == v2) {
continue; // do nothing for now
}
if (GeomUtils::distPointSegment<Vec3r>(v0, v1, v2) < 1.0e-6) {
detri.viP = vi0;
detri.viA = vi1;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v1, v0, v2) < 1.0e-6) {
detri.viP = vi1;
detri.viA = vi0;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v2, v0, v1) < 1.0e-6) {
detri.viP = vi2;
detri.viA = vi0;
detri.viB = vi1;
}
else {
continue;
}
detri.v = zero;
detri.n = 0;
for (uint j = 0; j < viSize; j += 3) {
if (i == j) {
continue;
}
vi0 = cleanVIndices[j];
vi1 = cleanVIndices[j + 1];
vi2 = cleanVIndices[j + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (detri.viP == vi0 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v2 - v0);
detri.n++;
}
else if (detri.viP == vi0 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v1 - v0);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v2 - v1);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v0 - v1);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v1 - v2);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v0 - v2);
detri.n++;
}
}
if (detri.n > 0) {
detri.v.normalizeSafe();
}
detriList.push_back(detri);
}
if (!detriList.empty()) {
vector<detri_t>::iterator v;
for (v = detriList.begin(); v != detriList.end(); v++) {
detri_t detri = (*v);
if (detri.n == 0) {
cleanVertices[detri.viP] = cleanVertices[detri.viA];
cleanVertices[detri.viP + 1] = cleanVertices[detri.viA + 1];
cleanVertices[detri.viP + 2] = cleanVertices[detri.viA + 2];
}
else if (detri.v.norm() > 0.0) {
cleanVertices[detri.viP] += 1.0e-5 * detri.v.x();
cleanVertices[detri.viP + 1] += 1.0e-5 * detri.v.y();
cleanVertices[detri.viP + 2] += 1.0e-5 * detri.v.z();
}
}
if (G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: Object %s contains %lu degenerated triangle%s (strokes may be incorrect)\n",
name,
ulong(detriList.size()),
(detriList.size() > 1) ? "s" : "");
}
}
// Create the IndexedFaceSet with the retrieved attributes
IndexedFaceSet *rep;
rep = new IndexedFaceSet(cleanVertices,
cvSize,
cleanNormals,
cnSize,
marray,
meshFrsMaterials.size(),
nullptr,
0,
numFaces,
numVertexPerFaces,
faceStyle,
faceEdgeMarks,
cleanVIndices,
viSize,
cleanNIndices,
niSize,
MIndices,
viSize,
nullptr,
0,
0);
// sets the id of the rep
rep->setId(Id(id, 0));
rep->setName(ob->id.name + 2);
rep->setLibraryPath(ob->id.lib ? ob->id.lib->filepath : "");
const BBox<Vec3r> bbox = BBox<Vec3r>(Vec3r(ls.minBBox[0], ls.minBBox[1], ls.minBBox[2]),
Vec3r(ls.maxBBox[0], ls.maxBBox[1], ls.maxBBox[2]));
rep->setBBox(bbox);
shape->AddRep(rep);
currentMesh->AddChild(shape);
_Scene->AddChild(currentMesh);
}
} /* namespace Freestyle */