Listing the "Blender Foundation" as copyright holder implied the Blender Foundation holds copyright to files which may include work from many developers. While keeping copyright on headers makes sense for isolated libraries, Blender's own code may be refactored or moved between files in a way that makes the per file copyright holders less meaningful. Copyright references to the "Blender Foundation" have been replaced with "Blender Authors", with the exception of `./extern/` since these this contains libraries which are more isolated, any changed to license headers there can be handled on a case-by-case basis. Some directories in `./intern/` have also been excluded: - `./intern/cycles/` it's own `AUTHORS` file is planned. - `./intern/opensubdiv/`. An "AUTHORS" file has been added, using the chromium projects authors file as a template. Design task: #110784 Ref !110783.
1345 lines
34 KiB
C++
1345 lines
34 KiB
C++
/* SPDX-FileCopyrightText: 2008-2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup freestyle
|
|
* \brief Class gathering stroke creation algorithms
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <stdexcept>
|
|
|
|
#include "Canvas.h"
|
|
#include "CurveIterators.h"
|
|
#include "Operators.h"
|
|
#include "Stroke.h"
|
|
#include "StrokeIterators.h"
|
|
|
|
#include "BLI_sys_types.h"
|
|
|
|
#include "BKE_global.h"
|
|
|
|
namespace Freestyle {
|
|
|
|
Operators::I1DContainer Operators::_current_view_edges_set;
|
|
Operators::I1DContainer Operators::_current_chains_set;
|
|
Operators::I1DContainer *Operators::_current_set = nullptr;
|
|
Operators::StrokesContainer Operators::_current_strokes_set;
|
|
|
|
int Operators::select(UnaryPredicate1D &pred)
|
|
{
|
|
if (!_current_set) {
|
|
return 0;
|
|
}
|
|
if (_current_set->empty()) {
|
|
return 0;
|
|
}
|
|
I1DContainer new_set;
|
|
I1DContainer rejected;
|
|
Functions1D::ChainingTimeStampF1D cts;
|
|
Functions1D::TimeStampF1D ts;
|
|
I1DContainer::iterator it = _current_set->begin();
|
|
I1DContainer::iterator itbegin = it;
|
|
while (it != _current_set->end()) {
|
|
Interface1D *i1d = *it;
|
|
cts(*i1d); // mark everyone's chaining time stamp anyway
|
|
if (pred(*i1d) < 0) {
|
|
new_set.clear();
|
|
rejected.clear();
|
|
return -1;
|
|
}
|
|
if (pred.result) {
|
|
new_set.push_back(i1d);
|
|
ts(*i1d);
|
|
}
|
|
else {
|
|
rejected.push_back(i1d);
|
|
}
|
|
++it;
|
|
}
|
|
if ((*itbegin)->getExactTypeName() != "ViewEdge") {
|
|
for (it = rejected.begin(); it != rejected.end(); ++it) {
|
|
delete *it;
|
|
}
|
|
}
|
|
rejected.clear();
|
|
_current_set->clear();
|
|
*_current_set = new_set;
|
|
return 0;
|
|
}
|
|
|
|
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator &it,
|
|
UnaryPredicate1D &pred,
|
|
UnaryFunction1D_void &modifier)
|
|
{
|
|
if (_current_view_edges_set.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint id = 0;
|
|
ViewEdge *edge;
|
|
I1DContainer new_chains_set;
|
|
|
|
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
|
|
it_edge != _current_view_edges_set.end();
|
|
++it_edge)
|
|
{
|
|
if (pred(**it_edge) < 0) {
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
continue;
|
|
}
|
|
|
|
edge = dynamic_cast<ViewEdge *>(*it_edge);
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
|
|
Chain *new_chain = new Chain(id);
|
|
++id;
|
|
while (true) {
|
|
new_chain->push_viewedge_back(*it, it.getOrientation());
|
|
if (modifier(**it) < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
++it;
|
|
if (it.isEnd()) {
|
|
break;
|
|
}
|
|
if (pred(**it) < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
break;
|
|
}
|
|
}
|
|
new_chains_set.push_back(new_chain);
|
|
}
|
|
|
|
if (!new_chains_set.empty()) {
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
_current_chains_set.push_back(*it);
|
|
}
|
|
new_chains_set.clear();
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
delete (*it);
|
|
}
|
|
new_chains_set.clear();
|
|
return -1;
|
|
}
|
|
|
|
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator &it, UnaryPredicate1D &pred)
|
|
{
|
|
if (_current_view_edges_set.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint id = 0;
|
|
Functions1D::IncrementChainingTimeStampF1D ts;
|
|
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
|
|
ViewEdge *edge;
|
|
I1DContainer new_chains_set;
|
|
|
|
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
|
|
it_edge != _current_view_edges_set.end();
|
|
++it_edge)
|
|
{
|
|
if (pred(**it_edge) < 0) {
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
continue;
|
|
}
|
|
if (pred_ts(**it_edge) < 0) {
|
|
goto error;
|
|
}
|
|
if (pred_ts.result) {
|
|
continue;
|
|
}
|
|
|
|
edge = dynamic_cast<ViewEdge *>(*it_edge);
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
|
|
Chain *new_chain = new Chain(id);
|
|
++id;
|
|
while (true) {
|
|
new_chain->push_viewedge_back(*it, it.getOrientation());
|
|
ts(**it);
|
|
++it;
|
|
if (it.isEnd()) {
|
|
break;
|
|
}
|
|
if (pred(**it) < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
break;
|
|
}
|
|
if (pred_ts(**it) < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
if (pred_ts.result) {
|
|
break;
|
|
}
|
|
}
|
|
new_chains_set.push_back(new_chain);
|
|
}
|
|
|
|
if (!new_chains_set.empty()) {
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
_current_chains_set.push_back(*it);
|
|
}
|
|
new_chains_set.clear();
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
delete (*it);
|
|
}
|
|
new_chains_set.clear();
|
|
return -1;
|
|
}
|
|
|
|
#if 0
|
|
void Operators::bidirectionalChain(ViewEdgeIterator &it,
|
|
UnaryPredicate1D &pred,
|
|
UnaryFunction1D_void &modifier)
|
|
{
|
|
if (_current_view_edges_set.empty()) {
|
|
return;
|
|
}
|
|
|
|
uint id = 0;
|
|
ViewEdge *edge;
|
|
Chain *new_chain;
|
|
|
|
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
|
|
it_edge != _current_view_edges_set.end();
|
|
++it_edge)
|
|
{
|
|
if (pred(**it_edge)) {
|
|
continue;
|
|
}
|
|
|
|
edge = dynamic_cast<ViewEdge *>(*it_edge);
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
|
|
Chain *new_chain = new Chain(id);
|
|
++id;
|
|
# if 0 // FIXME
|
|
ViewEdgeIterator it_back(it);
|
|
--it_back;
|
|
# endif
|
|
do {
|
|
new_chain->push_viewedge_back(*it, it.getOrientation());
|
|
modifier(**it);
|
|
++it;
|
|
} while (!it.isEnd() && !pred(**it));
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
--it;
|
|
while (!it.isEnd() && !pred(**it)) {
|
|
new_chain->push_viewedge_front(*it, it.getOrientation());
|
|
modifier(**it);
|
|
--it;
|
|
}
|
|
|
|
_current_chains_set.push_back(new_chain);
|
|
}
|
|
|
|
if (!_current_chains_set.empty()) {
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
}
|
|
|
|
void Operators::bidirectionalChain(ViewEdgeIterator &it, UnaryPredicate1D &pred)
|
|
{
|
|
if (_current_view_edges_set.empty()) {
|
|
return;
|
|
}
|
|
|
|
uint id = 0;
|
|
Functions1D::IncrementChainingTimeStampF1D ts;
|
|
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
|
|
|
|
ViewEdge *edge;
|
|
Chain *new_chain;
|
|
|
|
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
|
|
it_edge != _current_view_edges_set.end();
|
|
++it_edge)
|
|
{
|
|
if (pred(**it_edge) || pred_ts(**it_edge)) {
|
|
continue;
|
|
}
|
|
|
|
edge = dynamic_cast<ViewEdge *>(*it_edge);
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
|
|
Chain *new_chain = new Chain(id);
|
|
++id;
|
|
# if 0 // FIXME
|
|
ViewEdgeIterator it_back(it);
|
|
--it_back;
|
|
# endif
|
|
do {
|
|
new_chain->push_viewedge_back(*it, it.getOrientation());
|
|
ts(**it);
|
|
++it;
|
|
} while (!it.isEnd() && !pred(**it) && !pred_ts(**it));
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
--it;
|
|
while (!it.isEnd() && !pred(**it) && !pred_ts(**it)) {
|
|
new_chain->push_viewedge_front(*it, it.getOrientation());
|
|
ts(**it);
|
|
--it;
|
|
}
|
|
|
|
_current_chains_set.push_back(new_chain);
|
|
}
|
|
|
|
if (!_current_chains_set.empty()) {
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int Operators::bidirectionalChain(ChainingIterator &it, UnaryPredicate1D &pred)
|
|
{
|
|
if (_current_view_edges_set.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint id = 0;
|
|
Functions1D::IncrementChainingTimeStampF1D ts;
|
|
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
|
|
ViewEdge *edge;
|
|
I1DContainer new_chains_set;
|
|
|
|
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
|
|
it_edge != _current_view_edges_set.end();
|
|
++it_edge)
|
|
{
|
|
if (pred(**it_edge) < 0) {
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
continue;
|
|
}
|
|
if (pred_ts(**it_edge) < 0) {
|
|
goto error;
|
|
}
|
|
if (pred_ts.result) {
|
|
continue;
|
|
}
|
|
|
|
edge = dynamic_cast<ViewEdge *>(*it_edge);
|
|
// re-init iterator
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
it.setOrientation(true);
|
|
if (it.init() < 0) {
|
|
goto error;
|
|
}
|
|
|
|
Chain *new_chain = new Chain(id);
|
|
++id;
|
|
#if 0 // FIXME
|
|
ViewEdgeIterator it_back(it);
|
|
--it_back;
|
|
#endif
|
|
while (true) {
|
|
new_chain->push_viewedge_back(*it, it.getOrientation());
|
|
ts(**it);
|
|
if (it.increment() < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
if (it.isEnd()) {
|
|
break;
|
|
}
|
|
if (pred(**it) < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
break;
|
|
}
|
|
}
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
it.setOrientation(true);
|
|
if (it.decrement() < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
while (!it.isEnd()) {
|
|
if (pred(**it) < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
if (pred.result) {
|
|
break;
|
|
}
|
|
new_chain->push_viewedge_front(*it, it.getOrientation());
|
|
ts(**it);
|
|
if (it.decrement() < 0) {
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
}
|
|
new_chains_set.push_back(new_chain);
|
|
}
|
|
|
|
if (!new_chains_set.empty()) {
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
_current_chains_set.push_back(*it);
|
|
}
|
|
new_chains_set.clear();
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
delete (*it);
|
|
}
|
|
new_chains_set.clear();
|
|
return -1;
|
|
}
|
|
|
|
int Operators::bidirectionalChain(ChainingIterator &it)
|
|
{
|
|
if (_current_view_edges_set.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint id = 0;
|
|
Functions1D::IncrementChainingTimeStampF1D ts;
|
|
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
|
|
ViewEdge *edge;
|
|
I1DContainer new_chains_set;
|
|
|
|
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
|
|
it_edge != _current_view_edges_set.end();
|
|
++it_edge)
|
|
{
|
|
if (pred_ts(**it_edge) < 0) {
|
|
goto error;
|
|
}
|
|
if (pred_ts.result) {
|
|
continue;
|
|
}
|
|
|
|
edge = dynamic_cast<ViewEdge *>(*it_edge);
|
|
// re-init iterator
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
it.setOrientation(true);
|
|
if (it.init() < 0) {
|
|
goto error;
|
|
}
|
|
|
|
Chain *new_chain = new Chain(id);
|
|
++id;
|
|
#if 0 // FIXME
|
|
ViewEdgeIterator it_back(it);
|
|
--it_back;
|
|
#endif
|
|
do {
|
|
new_chain->push_viewedge_back(*it, it.getOrientation());
|
|
ts(**it);
|
|
if (it.increment() < 0) { // FIXME
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
} while (!it.isEnd());
|
|
it.setBegin(edge);
|
|
it.setCurrentEdge(edge);
|
|
it.setOrientation(true);
|
|
if (it.decrement() < 0) { // FIXME
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
while (!it.isEnd()) {
|
|
new_chain->push_viewedge_front(*it, it.getOrientation());
|
|
ts(**it);
|
|
if (it.decrement() < 0) { // FIXME
|
|
delete new_chain;
|
|
goto error;
|
|
}
|
|
}
|
|
new_chains_set.push_back(new_chain);
|
|
}
|
|
|
|
if (!new_chains_set.empty()) {
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
_current_chains_set.push_back(*it);
|
|
}
|
|
new_chains_set.clear();
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
|
|
delete (*it);
|
|
}
|
|
new_chains_set.clear();
|
|
return -1;
|
|
}
|
|
|
|
int Operators::sequentialSplit(UnaryPredicate0D &pred, float sampling)
|
|
{
|
|
if (_current_chains_set.empty()) {
|
|
cerr << "Warning: current set empty" << endl;
|
|
return 0;
|
|
}
|
|
CurvePoint *point;
|
|
Chain *new_curve;
|
|
I1DContainer splitted_chains;
|
|
Interface0DIterator first;
|
|
Interface0DIterator end;
|
|
Interface0DIterator last;
|
|
Interface0DIterator it;
|
|
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
|
|
for (; cit != citend; ++cit) {
|
|
Id currentId = (*cit)->getId();
|
|
new_curve = new Chain(currentId);
|
|
first = (*cit)->pointsBegin(sampling);
|
|
end = (*cit)->pointsEnd(sampling);
|
|
last = end;
|
|
--last;
|
|
it = first;
|
|
|
|
point = dynamic_cast<CurvePoint *>(&(*it));
|
|
new_curve->push_vertex_back(point);
|
|
++it;
|
|
for (; it != end; ++it) {
|
|
point = dynamic_cast<CurvePoint *>(&(*it));
|
|
new_curve->push_vertex_back(point);
|
|
if (pred(it) < 0) {
|
|
delete new_curve;
|
|
goto error;
|
|
}
|
|
if (pred.result && (it != last)) {
|
|
splitted_chains.push_back(new_curve);
|
|
currentId.setSecond(currentId.getSecond() + 1);
|
|
new_curve = new Chain(currentId);
|
|
new_curve->push_vertex_back(point);
|
|
}
|
|
}
|
|
if (new_curve->nSegments() == 0) {
|
|
delete new_curve;
|
|
return 0;
|
|
}
|
|
|
|
splitted_chains.push_back(new_curve);
|
|
}
|
|
|
|
// Update the current set of chains:
|
|
cit = _current_chains_set.begin();
|
|
for (; cit != citend; ++cit) {
|
|
delete (*cit);
|
|
}
|
|
_current_chains_set.clear();
|
|
#if 0
|
|
_current_chains_set = splitted_chains;
|
|
#else
|
|
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
|
|
if ((*cit)->getLength2D() < M_EPSILON) {
|
|
delete (*cit);
|
|
continue;
|
|
}
|
|
_current_chains_set.push_back(*cit);
|
|
}
|
|
#endif
|
|
splitted_chains.clear();
|
|
|
|
if (!_current_chains_set.empty()) {
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
cit = splitted_chains.begin();
|
|
citend = splitted_chains.end();
|
|
for (; cit != citend; ++cit) {
|
|
delete (*cit);
|
|
}
|
|
splitted_chains.clear();
|
|
return -1;
|
|
}
|
|
|
|
int Operators::sequentialSplit(UnaryPredicate0D &startingPred,
|
|
UnaryPredicate0D &stoppingPred,
|
|
float sampling)
|
|
{
|
|
if (_current_chains_set.empty()) {
|
|
cerr << "Warning: current set empty" << endl;
|
|
return 0;
|
|
}
|
|
CurvePoint *point;
|
|
Chain *new_curve;
|
|
I1DContainer splitted_chains;
|
|
Interface0DIterator first;
|
|
Interface0DIterator end;
|
|
Interface0DIterator last;
|
|
Interface0DIterator itStart;
|
|
Interface0DIterator itStop;
|
|
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
|
|
for (; cit != citend; ++cit) {
|
|
Id currentId = (*cit)->getId();
|
|
first = (*cit)->pointsBegin(sampling);
|
|
end = (*cit)->pointsEnd(sampling);
|
|
last = end;
|
|
--last;
|
|
itStart = first;
|
|
do {
|
|
itStop = itStart;
|
|
++itStop;
|
|
|
|
new_curve = new Chain(currentId);
|
|
currentId.setSecond(currentId.getSecond() + 1);
|
|
|
|
point = dynamic_cast<CurvePoint *>(&(*itStart));
|
|
new_curve->push_vertex_back(point);
|
|
do {
|
|
point = dynamic_cast<CurvePoint *>(&(*itStop));
|
|
new_curve->push_vertex_back(point);
|
|
++itStop;
|
|
if (itStop == end) {
|
|
break;
|
|
}
|
|
if (stoppingPred(itStop) < 0) {
|
|
delete new_curve;
|
|
goto error;
|
|
}
|
|
} while (!stoppingPred.result);
|
|
if (itStop != end) {
|
|
point = dynamic_cast<CurvePoint *>(&(*itStop));
|
|
new_curve->push_vertex_back(point);
|
|
}
|
|
if (new_curve->nSegments() == 0) {
|
|
delete new_curve;
|
|
}
|
|
else {
|
|
splitted_chains.push_back(new_curve);
|
|
}
|
|
// find next start
|
|
do {
|
|
++itStart;
|
|
if (itStart == end) {
|
|
break;
|
|
}
|
|
if (startingPred(itStart) < 0) {
|
|
goto error;
|
|
}
|
|
} while (!startingPred.result);
|
|
} while (!ELEM(itStart, end, last));
|
|
}
|
|
|
|
// Update the current set of chains:
|
|
cit = _current_chains_set.begin();
|
|
for (; cit != citend; ++cit) {
|
|
delete (*cit);
|
|
}
|
|
_current_chains_set.clear();
|
|
#if 0
|
|
_current_chains_set = splitted_chains;
|
|
#else
|
|
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
|
|
if ((*cit)->getLength2D() < M_EPSILON) {
|
|
delete (*cit);
|
|
continue;
|
|
}
|
|
_current_chains_set.push_back(*cit);
|
|
}
|
|
#endif
|
|
splitted_chains.clear();
|
|
|
|
if (!_current_chains_set.empty()) {
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
cit = splitted_chains.begin();
|
|
citend = splitted_chains.end();
|
|
for (; cit != citend; ++cit) {
|
|
delete (*cit);
|
|
}
|
|
splitted_chains.clear();
|
|
return -1;
|
|
}
|
|
|
|
// Internal function
|
|
static int __recursiveSplit(Chain *_curve,
|
|
UnaryFunction0D<double> &func,
|
|
UnaryPredicate1D &pred,
|
|
float sampling,
|
|
Operators::I1DContainer &newChains,
|
|
Operators::I1DContainer &splitted_chains)
|
|
{
|
|
if (((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)) {
|
|
newChains.push_back(_curve);
|
|
return 0;
|
|
}
|
|
|
|
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
|
|
CurveInternal::CurvePointIterator second = first;
|
|
++second;
|
|
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
|
|
CurveInternal::CurvePointIterator it = second;
|
|
CurveInternal::CurvePointIterator split = second;
|
|
Interface0DIterator it0d = it.castToInterface0DIterator();
|
|
real _min = FLT_MAX; // func(it0d);
|
|
++it;
|
|
CurveInternal::CurvePointIterator next = it;
|
|
++next;
|
|
|
|
bool bsplit = false;
|
|
for (; ((it != end) && (next != end)); ++it, ++next) {
|
|
it0d = it.castToInterface0DIterator();
|
|
if (func(it0d) < 0) {
|
|
return -1;
|
|
}
|
|
if (func.result < _min) {
|
|
_min = func.result;
|
|
split = it;
|
|
bsplit = true;
|
|
}
|
|
}
|
|
|
|
if (!bsplit) { // we didn't find any minimum
|
|
newChains.push_back(_curve);
|
|
return 0;
|
|
}
|
|
|
|
// retrieves the current splitting id
|
|
Id *newId = _curve->getSplittingId();
|
|
if (newId == nullptr) {
|
|
newId = new Id(_curve->getId());
|
|
_curve->setSplittingId(newId);
|
|
}
|
|
|
|
Chain *new_curve_a = new Chain(*newId);
|
|
newId->setSecond(newId->getSecond() + 1);
|
|
new_curve_a->setSplittingId(newId);
|
|
Chain *new_curve_b = new Chain(*newId);
|
|
newId->setSecond(newId->getSecond() + 1);
|
|
new_curve_b->setSplittingId(newId);
|
|
|
|
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(),
|
|
vitend = _curve->curveVerticesEnd();
|
|
CurveInternal::CurvePointIterator vnext = vit;
|
|
++vnext;
|
|
|
|
for (; (vit != vitend) && (vnext != vitend) &&
|
|
(vnext._CurvilinearLength < split._CurvilinearLength);
|
|
++vit, ++vnext)
|
|
{
|
|
new_curve_a->push_vertex_back(&(*vit));
|
|
}
|
|
if ((vit == vitend) || (vnext == vitend)) {
|
|
if (G.debug & G_DEBUG_FREESTYLE) {
|
|
cout << "The split takes place in bad location" << endl;
|
|
}
|
|
newChains.push_back(_curve);
|
|
delete new_curve_a;
|
|
delete new_curve_b;
|
|
return 0;
|
|
}
|
|
|
|
// build the two resulting chains
|
|
new_curve_a->push_vertex_back(&(*vit));
|
|
new_curve_a->push_vertex_back(&(*split));
|
|
new_curve_b->push_vertex_back(&(*split));
|
|
|
|
for (vit = vnext; vit != vitend; ++vit) {
|
|
new_curve_b->push_vertex_back(&(*vit));
|
|
}
|
|
|
|
// let's check whether one or two of the two new curves satisfy the stopping condition or not.
|
|
// (if one of them satisfies it, we don't split)
|
|
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
|
|
delete new_curve_a;
|
|
delete new_curve_b;
|
|
return -1;
|
|
}
|
|
if (pred.result) {
|
|
// we don't actually create these two chains
|
|
newChains.push_back(_curve);
|
|
delete new_curve_a;
|
|
delete new_curve_b;
|
|
return 0;
|
|
}
|
|
// here we know we'll split _curve:
|
|
splitted_chains.push_back(_curve);
|
|
|
|
__recursiveSplit(new_curve_a, func, pred, sampling, newChains, splitted_chains);
|
|
__recursiveSplit(new_curve_b, func, pred, sampling, newChains, splitted_chains);
|
|
return 0;
|
|
}
|
|
|
|
int Operators::recursiveSplit(UnaryFunction0D<double> &func,
|
|
UnaryPredicate1D &pred,
|
|
float sampling)
|
|
{
|
|
if (_current_chains_set.empty()) {
|
|
cerr << "Warning: current set empty" << endl;
|
|
return 0;
|
|
}
|
|
|
|
Chain *currentChain = nullptr;
|
|
I1DContainer splitted_chains;
|
|
I1DContainer newChains;
|
|
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
|
|
for (; cit != citend; ++cit) {
|
|
currentChain = dynamic_cast<Chain *>(*cit);
|
|
if (!currentChain) {
|
|
continue;
|
|
}
|
|
// let's check the first one:
|
|
if (pred(*currentChain) < 0) {
|
|
return -1;
|
|
}
|
|
if (!pred.result) {
|
|
__recursiveSplit(currentChain, func, pred, sampling, newChains, splitted_chains);
|
|
}
|
|
else {
|
|
newChains.push_back(currentChain);
|
|
}
|
|
}
|
|
// Update the current set of chains:
|
|
if (!splitted_chains.empty()) {
|
|
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
|
|
delete (*cit);
|
|
}
|
|
splitted_chains.clear();
|
|
}
|
|
|
|
_current_chains_set.clear();
|
|
#if 0
|
|
_current_chains_set = newChains;
|
|
#else
|
|
for (cit = newChains.begin(), citend = newChains.end(); cit != citend; ++cit) {
|
|
if ((*cit)->getLength2D() < M_EPSILON) {
|
|
delete (*cit);
|
|
continue;
|
|
}
|
|
_current_chains_set.push_back(*cit);
|
|
}
|
|
#endif
|
|
newChains.clear();
|
|
|
|
if (!_current_chains_set.empty()) {
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// recursive split with pred 0D
|
|
static int __recursiveSplit(Chain *_curve,
|
|
UnaryFunction0D<double> &func,
|
|
UnaryPredicate0D &pred0d,
|
|
UnaryPredicate1D &pred,
|
|
float sampling,
|
|
Operators::I1DContainer &newChains,
|
|
Operators::I1DContainer &splitted_chains)
|
|
{
|
|
if (((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)) {
|
|
newChains.push_back(_curve);
|
|
return 0;
|
|
}
|
|
|
|
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
|
|
CurveInternal::CurvePointIterator second = first;
|
|
++second;
|
|
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
|
|
CurveInternal::CurvePointIterator it = second;
|
|
CurveInternal::CurvePointIterator split = second;
|
|
Interface0DIterator it0d = it.castToInterface0DIterator();
|
|
#if 0
|
|
real _min = func(it0d);
|
|
++it;
|
|
#endif
|
|
real _min = FLT_MAX;
|
|
++it;
|
|
// real mean = 0.0f;
|
|
// soc unused - real variance = 0.0f;
|
|
// uint count = 0;
|
|
CurveInternal::CurvePointIterator next = it;
|
|
++next;
|
|
|
|
bool bsplit = false;
|
|
for (; ((it != end) && (next != end)); ++it, ++next) {
|
|
// ++count;
|
|
it0d = it.castToInterface0DIterator();
|
|
if (pred0d(it0d) < 0) {
|
|
return -1;
|
|
}
|
|
if (!pred0d.result) {
|
|
continue;
|
|
}
|
|
if (func(it0d) < 0) {
|
|
return -1;
|
|
}
|
|
// mean += func.result;
|
|
if (func.result < _min) {
|
|
_min = func.result;
|
|
split = it;
|
|
bsplit = true;
|
|
}
|
|
}
|
|
// mean /= float(count);
|
|
|
|
// if ((!bsplit) || (mean - _min > mean)) { // we didn't find any minimum
|
|
if (!bsplit) { // we didn't find any minimum
|
|
newChains.push_back(_curve);
|
|
return 0;
|
|
}
|
|
|
|
// retrieves the current splitting id
|
|
Id *newId = _curve->getSplittingId();
|
|
if (newId == nullptr) {
|
|
newId = new Id(_curve->getId());
|
|
_curve->setSplittingId(newId);
|
|
}
|
|
|
|
Chain *new_curve_a = new Chain(*newId);
|
|
newId->setSecond(newId->getSecond() + 1);
|
|
new_curve_a->setSplittingId(newId);
|
|
Chain *new_curve_b = new Chain(*newId);
|
|
newId->setSecond(newId->getSecond() + 1);
|
|
new_curve_b->setSplittingId(newId);
|
|
|
|
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(),
|
|
vitend = _curve->curveVerticesEnd();
|
|
CurveInternal::CurvePointIterator vnext = vit;
|
|
++vnext;
|
|
|
|
for (; (vit != vitend) && (vnext != vitend) &&
|
|
(vnext._CurvilinearLength < split._CurvilinearLength);
|
|
++vit, ++vnext)
|
|
{
|
|
new_curve_a->push_vertex_back(&(*vit));
|
|
}
|
|
if ((vit == vitend) || (vnext == vitend)) {
|
|
if (G.debug & G_DEBUG_FREESTYLE) {
|
|
cout << "The split takes place in bad location" << endl;
|
|
}
|
|
newChains.push_back(_curve);
|
|
delete new_curve_a;
|
|
delete new_curve_b;
|
|
return 0;
|
|
}
|
|
|
|
// build the two resulting chains
|
|
new_curve_a->push_vertex_back(&(*vit));
|
|
new_curve_a->push_vertex_back(&(*split));
|
|
new_curve_b->push_vertex_back(&(*split));
|
|
|
|
for (vit = vnext; vit != vitend; ++vit) {
|
|
new_curve_b->push_vertex_back(&(*vit));
|
|
}
|
|
|
|
// let's check whether one or two of the two new curves satisfy the stopping condition or not.
|
|
// (if one of them satisfies it, we don't split)
|
|
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
|
|
delete new_curve_a;
|
|
delete new_curve_b;
|
|
return -1;
|
|
}
|
|
if (pred.result) {
|
|
// we don't actually create these two chains
|
|
newChains.push_back(_curve);
|
|
delete new_curve_a;
|
|
delete new_curve_b;
|
|
return 0;
|
|
}
|
|
// here we know we'll split _curve:
|
|
splitted_chains.push_back(_curve);
|
|
|
|
__recursiveSplit(new_curve_a, func, pred0d, pred, sampling, newChains, splitted_chains);
|
|
__recursiveSplit(new_curve_b, func, pred0d, pred, sampling, newChains, splitted_chains);
|
|
return 0;
|
|
}
|
|
|
|
int Operators::recursiveSplit(UnaryFunction0D<double> &func,
|
|
UnaryPredicate0D &pred0d,
|
|
UnaryPredicate1D &pred,
|
|
float sampling)
|
|
{
|
|
if (_current_chains_set.empty()) {
|
|
cerr << "Warning: current set empty" << endl;
|
|
return 0;
|
|
}
|
|
|
|
Chain *currentChain = nullptr;
|
|
I1DContainer splitted_chains;
|
|
I1DContainer newChains;
|
|
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
|
|
for (; cit != citend; ++cit) {
|
|
currentChain = dynamic_cast<Chain *>(*cit);
|
|
if (!currentChain) {
|
|
continue;
|
|
}
|
|
// let's check the first one:
|
|
if (pred(*currentChain) < 0) {
|
|
return -1;
|
|
}
|
|
if (!pred.result) {
|
|
__recursiveSplit(currentChain, func, pred0d, pred, sampling, newChains, splitted_chains);
|
|
}
|
|
else {
|
|
newChains.push_back(currentChain);
|
|
}
|
|
}
|
|
// Update the current set of chains:
|
|
if (!splitted_chains.empty()) {
|
|
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
|
|
delete (*cit);
|
|
}
|
|
splitted_chains.clear();
|
|
}
|
|
|
|
_current_chains_set.clear();
|
|
#if 0
|
|
_current_chains_set = newChains;
|
|
#else
|
|
for (cit = newChains.begin(), citend = newChains.end(); cit != citend; ++cit) {
|
|
if ((*cit)->getLength2D() < M_EPSILON) {
|
|
delete (*cit);
|
|
continue;
|
|
}
|
|
_current_chains_set.push_back(*cit);
|
|
}
|
|
#endif
|
|
newChains.clear();
|
|
|
|
if (!_current_chains_set.empty()) {
|
|
_current_set = &_current_chains_set;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Internal class
|
|
class PredicateWrapper {
|
|
public:
|
|
inline PredicateWrapper(BinaryPredicate1D &pred)
|
|
{
|
|
_pred = &pred;
|
|
}
|
|
|
|
inline bool operator()(Interface1D *i1, Interface1D *i2)
|
|
{
|
|
if (i1 == i2) {
|
|
return false;
|
|
}
|
|
if ((*_pred)(*i1, *i2) < 0) {
|
|
throw std::runtime_error("comparison failed");
|
|
}
|
|
return _pred->result;
|
|
}
|
|
|
|
private:
|
|
BinaryPredicate1D *_pred;
|
|
};
|
|
|
|
int Operators::sort(BinaryPredicate1D &pred)
|
|
{
|
|
if (!_current_set) {
|
|
return 0;
|
|
}
|
|
PredicateWrapper wrapper(pred);
|
|
try {
|
|
std::sort(_current_set->begin(), _current_set->end(), wrapper);
|
|
}
|
|
catch (std::runtime_error &e) {
|
|
cerr << "Warning: Operator.sort(): " << e.what() << endl;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Stroke *createStroke(Interface1D &inter)
|
|
{
|
|
Stroke *stroke = new Stroke;
|
|
stroke->setId(inter.getId());
|
|
|
|
float currentCurvilignAbscissa = 0.0f;
|
|
|
|
Interface0DIterator it = inter.verticesBegin(), itend = inter.verticesEnd();
|
|
Interface0DIterator itfirst = it;
|
|
|
|
Vec2r current(it->getPoint2D());
|
|
Vec2r previous = current;
|
|
SVertex *sv;
|
|
CurvePoint *cp;
|
|
StrokeVertex *stroke_vertex = nullptr;
|
|
bool hasSingularity = false;
|
|
|
|
do {
|
|
cp = dynamic_cast<CurvePoint *>(&(*it));
|
|
if (!cp) {
|
|
sv = dynamic_cast<SVertex *>(&(*it));
|
|
if (!sv) {
|
|
cerr << "Warning: unexpected Vertex type" << endl;
|
|
continue;
|
|
}
|
|
stroke_vertex = new StrokeVertex(sv);
|
|
}
|
|
else {
|
|
stroke_vertex = new StrokeVertex(cp);
|
|
}
|
|
current = stroke_vertex->getPoint2D();
|
|
Vec2r vec_tmp(current - previous);
|
|
real dist = vec_tmp.norm();
|
|
if (dist < 1.0e-6) {
|
|
hasSingularity = true;
|
|
}
|
|
currentCurvilignAbscissa += dist;
|
|
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
|
|
stroke->push_back(stroke_vertex);
|
|
previous = current;
|
|
++it;
|
|
} while (!ELEM(it, itend, itfirst));
|
|
|
|
if (it == itfirst) {
|
|
// Add last vertex:
|
|
cp = dynamic_cast<CurvePoint *>(&(*it));
|
|
if (!cp) {
|
|
sv = dynamic_cast<SVertex *>(&(*it));
|
|
if (!sv) {
|
|
cerr << "Warning: unexpected Vertex type" << endl;
|
|
}
|
|
else {
|
|
stroke_vertex = new StrokeVertex(sv);
|
|
}
|
|
}
|
|
else {
|
|
stroke_vertex = new StrokeVertex(cp);
|
|
}
|
|
current = stroke_vertex->getPoint2D();
|
|
Vec2r vec_tmp(current - previous);
|
|
real dist = vec_tmp.norm();
|
|
if (dist < 1.0e-6) {
|
|
hasSingularity = true;
|
|
}
|
|
currentCurvilignAbscissa += dist;
|
|
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
|
|
stroke->push_back(stroke_vertex);
|
|
}
|
|
// Discard the stroke if the number of stroke vertices is less than two
|
|
if (stroke->strokeVerticesSize() < 2) {
|
|
delete stroke;
|
|
return nullptr;
|
|
}
|
|
stroke->setLength(currentCurvilignAbscissa);
|
|
if (hasSingularity) {
|
|
// Try to address singular points such that the distance between two subsequent vertices
|
|
// are smaller than epsilon.
|
|
StrokeInternal::StrokeVertexIterator v = stroke->strokeVerticesBegin();
|
|
StrokeInternal::StrokeVertexIterator vnext = v;
|
|
++vnext;
|
|
Vec2r next((*v).getPoint());
|
|
while (!vnext.isEnd()) {
|
|
current = next;
|
|
next = (*vnext).getPoint();
|
|
if ((next - current).norm() < 1.0e-6) {
|
|
StrokeInternal::StrokeVertexIterator vprevious = v;
|
|
if (!vprevious.isBegin()) {
|
|
--vprevious;
|
|
}
|
|
|
|
// collect a set of overlapping vertices
|
|
std::vector<StrokeVertex *> overlapping_vertices;
|
|
overlapping_vertices.push_back(&(*v));
|
|
do {
|
|
overlapping_vertices.push_back(&(*vnext));
|
|
current = next;
|
|
++v;
|
|
++vnext;
|
|
if (vnext.isEnd()) {
|
|
break;
|
|
}
|
|
next = (*vnext).getPoint();
|
|
} while ((next - current).norm() < 1.0e-6);
|
|
|
|
Vec2r target;
|
|
bool reverse;
|
|
if (!vnext.isEnd()) {
|
|
target = (*vnext).getPoint();
|
|
reverse = false;
|
|
}
|
|
else if (!vprevious.isBegin()) {
|
|
target = (*vprevious).getPoint();
|
|
reverse = true;
|
|
}
|
|
else {
|
|
// Discard the stroke because all stroke vertices are overlapping
|
|
delete stroke;
|
|
return nullptr;
|
|
}
|
|
current = overlapping_vertices.front()->getPoint();
|
|
Vec2r dir(target - current);
|
|
real dist = dir.norm();
|
|
real len = 1.0e-3; // default offset length
|
|
int nvert = overlapping_vertices.size();
|
|
if (dist < len * nvert) {
|
|
len = dist / nvert;
|
|
}
|
|
dir.normalize();
|
|
Vec2r offset(dir * len);
|
|
// add the offset to the overlapping vertices
|
|
StrokeVertex *sv;
|
|
std::vector<StrokeVertex *>::iterator it = overlapping_vertices.begin();
|
|
if (!reverse) {
|
|
for (int n = 0; n < nvert; n++) {
|
|
sv = (*it);
|
|
sv->setPoint(sv->getPoint() + offset * (n + 1));
|
|
++it;
|
|
}
|
|
}
|
|
else {
|
|
for (int n = 0; n < nvert; n++) {
|
|
sv = (*it);
|
|
sv->setPoint(sv->getPoint() + offset * (nvert - n));
|
|
++it;
|
|
}
|
|
}
|
|
|
|
if (vnext.isEnd()) {
|
|
break;
|
|
}
|
|
}
|
|
++v;
|
|
++vnext;
|
|
}
|
|
}
|
|
{
|
|
// Check if the stroke no longer contains singular points
|
|
Interface0DIterator v = stroke->verticesBegin();
|
|
Interface0DIterator vnext = v;
|
|
++vnext;
|
|
Vec2r next((*v).getPoint2D());
|
|
bool warning = false;
|
|
while (!vnext.isEnd()) {
|
|
current = next;
|
|
next = (*vnext).getPoint2D();
|
|
if ((next - current).norm() < 1.0e-6) {
|
|
warning = true;
|
|
break;
|
|
}
|
|
++v;
|
|
++vnext;
|
|
}
|
|
if (warning && G.debug & G_DEBUG_FREESTYLE) {
|
|
printf("Warning: stroke contains singular points.\n");
|
|
}
|
|
}
|
|
return stroke;
|
|
}
|
|
|
|
inline int applyShading(Stroke &stroke, vector<StrokeShader *> &shaders)
|
|
{
|
|
for (vector<StrokeShader *>::iterator it = shaders.begin(); it != shaders.end(); ++it) {
|
|
if ((*it)->shade(stroke) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int Operators::create(UnaryPredicate1D &pred, vector<StrokeShader *> shaders)
|
|
{
|
|
// Canvas* canvas = Canvas::getInstance();
|
|
if (!_current_set) {
|
|
cerr << "Warning: current set empty" << endl;
|
|
return 0;
|
|
}
|
|
StrokesContainer new_strokes_set;
|
|
for (Operators::I1DContainer::iterator it = _current_set->begin(); it != _current_set->end();
|
|
++it) {
|
|
if (pred(**it) < 0) {
|
|
goto error;
|
|
}
|
|
if (!pred.result) {
|
|
continue;
|
|
}
|
|
|
|
Stroke *stroke = createStroke(**it);
|
|
if (stroke) {
|
|
if (applyShading(*stroke, shaders) < 0) {
|
|
delete stroke;
|
|
goto error;
|
|
}
|
|
// canvas->RenderStroke(stroke);
|
|
new_strokes_set.push_back(stroke);
|
|
}
|
|
}
|
|
|
|
for (StrokesContainer::iterator it = new_strokes_set.begin(); it != new_strokes_set.end(); ++it)
|
|
{
|
|
_current_strokes_set.push_back(*it);
|
|
}
|
|
new_strokes_set.clear();
|
|
return 0;
|
|
|
|
error:
|
|
for (StrokesContainer::iterator it = new_strokes_set.begin(); it != new_strokes_set.end(); ++it)
|
|
{
|
|
delete (*it);
|
|
}
|
|
new_strokes_set.clear();
|
|
return -1;
|
|
}
|
|
|
|
void Operators::reset(bool removeStrokes)
|
|
{
|
|
ViewMap *vm = ViewMap::getInstance();
|
|
if (!vm) {
|
|
cerr << "Error: no ViewMap computed yet" << endl;
|
|
return;
|
|
}
|
|
_current_view_edges_set.clear();
|
|
for (I1DContainer::iterator it = _current_chains_set.begin(); it != _current_chains_set.end();
|
|
++it)
|
|
{
|
|
delete *it;
|
|
}
|
|
_current_chains_set.clear();
|
|
|
|
ViewMap::viewedges_container &vedges = vm->ViewEdges();
|
|
ViewMap::viewedges_container::iterator ve = vedges.begin(), veend = vedges.end();
|
|
for (; ve != veend; ++ve) {
|
|
if ((*ve)->getLength2D() < M_EPSILON) {
|
|
continue;
|
|
}
|
|
_current_view_edges_set.push_back(*ve);
|
|
}
|
|
_current_set = &_current_view_edges_set;
|
|
if (removeStrokes) {
|
|
_current_strokes_set.clear();
|
|
}
|
|
}
|
|
|
|
} /* namespace Freestyle */
|