Aligns Bezier handles when both handles are of the`BEZIER_HANDLE_ALIGN` type. If the left handle is selected, then the right one is aligned with it. The left handle is aligned with the right handle only if the left handle is not selected. Rel #105038 Pull Request: https://projects.blender.org/blender/blender/pulls/128726
381 lines
14 KiB
C++
381 lines
14 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup bke
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include "BLI_task.hh"
|
|
|
|
#include "BKE_attribute_math.hh"
|
|
#include "BKE_curves.hh"
|
|
|
|
namespace blender::bke::curves::bezier {
|
|
|
|
bool segment_is_vector(const Span<int8_t> handle_types_left,
|
|
const Span<int8_t> handle_types_right,
|
|
const int segment_index)
|
|
{
|
|
BLI_assert(handle_types_left.index_range().drop_back(1).contains(segment_index));
|
|
return segment_is_vector(handle_types_right[segment_index],
|
|
handle_types_left[segment_index + 1]);
|
|
}
|
|
|
|
bool last_cyclic_segment_is_vector(const Span<int8_t> handle_types_left,
|
|
const Span<int8_t> handle_types_right)
|
|
{
|
|
return segment_is_vector(handle_types_right.last(), handle_types_left.first());
|
|
}
|
|
|
|
void calculate_evaluated_offsets(const Span<int8_t> handle_types_left,
|
|
const Span<int8_t> handle_types_right,
|
|
const bool cyclic,
|
|
const int resolution,
|
|
MutableSpan<int> evaluated_offsets)
|
|
{
|
|
const int size = handle_types_left.size();
|
|
BLI_assert(evaluated_offsets.size() == size + 1);
|
|
|
|
evaluated_offsets.first() = 0;
|
|
if (size == 1) {
|
|
evaluated_offsets.last() = 1;
|
|
return;
|
|
}
|
|
|
|
int offset = 0;
|
|
for (const int i : IndexRange(size - 1)) {
|
|
evaluated_offsets[i] = offset;
|
|
offset += segment_is_vector(handle_types_left, handle_types_right, i) ? 1 : resolution;
|
|
}
|
|
|
|
evaluated_offsets.last(1) = offset;
|
|
if (cyclic) {
|
|
offset += last_cyclic_segment_is_vector(handle_types_left, handle_types_right) ? 1 :
|
|
resolution;
|
|
}
|
|
else {
|
|
offset++;
|
|
}
|
|
|
|
evaluated_offsets.last() = offset;
|
|
}
|
|
|
|
Insertion insert(const float3 &point_prev,
|
|
const float3 &handle_prev,
|
|
const float3 &handle_next,
|
|
const float3 &point_next,
|
|
float parameter)
|
|
{
|
|
/* De Casteljau Bezier subdivision. */
|
|
BLI_assert(parameter <= 1.0f && parameter >= 0.0f);
|
|
|
|
const float3 center_point = math::interpolate(handle_prev, handle_next, parameter);
|
|
|
|
Insertion result;
|
|
result.handle_prev = math::interpolate(point_prev, handle_prev, parameter);
|
|
result.handle_next = math::interpolate(handle_next, point_next, parameter);
|
|
result.left_handle = math::interpolate(result.handle_prev, center_point, parameter);
|
|
result.right_handle = math::interpolate(center_point, result.handle_next, parameter);
|
|
result.position = math::interpolate(result.left_handle, result.right_handle, parameter);
|
|
return result;
|
|
}
|
|
|
|
static float3 calculate_aligned_handle(const float3 &position,
|
|
const float3 &other_handle,
|
|
const float3 &aligned_handle)
|
|
{
|
|
/* Keep track of the old length of the opposite handle. */
|
|
const float length = math::distance(aligned_handle, position);
|
|
/* Set the other handle to directly opposite from the current handle. */
|
|
const float3 dir = math::normalize(other_handle - position);
|
|
return position - dir * length;
|
|
}
|
|
|
|
static void calculate_point_handles(const HandleType type_left,
|
|
const HandleType type_right,
|
|
const float3 position,
|
|
const float3 prev_position,
|
|
const float3 next_position,
|
|
float3 &left,
|
|
float3 &right)
|
|
{
|
|
if (ELEM(BEZIER_HANDLE_AUTO, type_left, type_right)) {
|
|
const float3 prev_diff = position - prev_position;
|
|
const float3 next_diff = next_position - position;
|
|
float prev_len = math::length(prev_diff);
|
|
float next_len = math::length(next_diff);
|
|
if (prev_len == 0.0f) {
|
|
prev_len = 1.0f;
|
|
}
|
|
if (next_len == 0.0f) {
|
|
next_len = 1.0f;
|
|
}
|
|
const float3 dir = next_diff / next_len + prev_diff / prev_len;
|
|
|
|
/* The magic number 2.5614 is derived from approximating a circular arc at the control point.
|
|
* Given the constraints:
|
|
*
|
|
* - `P0=(0,1),P1=(c,1),P2=(1,c),P3=(1,0)`.
|
|
* - The first derivative of the curve must agree with the circular arc derivative at the
|
|
* endpoints.
|
|
* - Minimize the maximum radial drift.
|
|
* one can compute `c ≈ 0.5519150244935105707435627`.
|
|
* The distance from P0 to P3 is `sqrt(2)`.
|
|
*
|
|
* The magic factor for `len` is `(sqrt(2) / 0.5519150244935105707435627) ≈ 2.562375546255352`.
|
|
* In older code of blender a slightly worse approximation of 2.5614 is used. It's kept
|
|
* for compatibility.
|
|
*
|
|
* See https://spencermortensen.com/articles/bezier-circle/. */
|
|
const float len = math::length(dir) * 2.5614f;
|
|
if (len != 0.0f) {
|
|
if (type_left == BEZIER_HANDLE_AUTO) {
|
|
const float prev_len_clamped = std::min(prev_len, next_len * 5.0f);
|
|
left = position + dir * -(prev_len_clamped / len);
|
|
}
|
|
if (type_right == BEZIER_HANDLE_AUTO) {
|
|
const float next_len_clamped = std::min(next_len, prev_len * 5.0f);
|
|
right = position + dir * (next_len_clamped / len);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type_left == BEZIER_HANDLE_VECTOR) {
|
|
left = calculate_vector_handle(position, prev_position);
|
|
}
|
|
|
|
if (type_right == BEZIER_HANDLE_VECTOR) {
|
|
right = calculate_vector_handle(position, next_position);
|
|
}
|
|
|
|
/* When one of the handles is "aligned" handle, it must be aligned with the other, i.e. point in
|
|
* the opposite direction. Don't handle the case of two aligned handles, because code elsewhere
|
|
* should keep the pair consistent, and the relative locations aren't affected by other points
|
|
* anyway. */
|
|
if (type_left == BEZIER_HANDLE_ALIGN && type_right != BEZIER_HANDLE_ALIGN) {
|
|
left = calculate_aligned_handle(position, right, left);
|
|
}
|
|
else if (type_left != BEZIER_HANDLE_ALIGN && type_right == BEZIER_HANDLE_ALIGN) {
|
|
right = calculate_aligned_handle(position, left, right);
|
|
}
|
|
}
|
|
|
|
void set_handle_position(const float3 &position,
|
|
const HandleType type,
|
|
const HandleType type_other,
|
|
const float3 &new_handle,
|
|
float3 &handle,
|
|
float3 &handle_other)
|
|
{
|
|
/* Don't bother when the handle positions are calculated automatically anyway. */
|
|
if (ELEM(type, BEZIER_HANDLE_AUTO, BEZIER_HANDLE_VECTOR)) {
|
|
return;
|
|
}
|
|
|
|
handle = new_handle;
|
|
if (type_other == BEZIER_HANDLE_ALIGN) {
|
|
handle_other = calculate_aligned_handle(position, handle, handle_other);
|
|
}
|
|
}
|
|
|
|
void calculate_aligned_handles(const IndexMask &selection,
|
|
const Span<float3> positions,
|
|
const Span<float3> align_with,
|
|
MutableSpan<float3> align_handles)
|
|
{
|
|
selection.foreach_index_optimized<int>(GrainSize(4096), [&](const int point) {
|
|
align_handles[point] = calculate_aligned_handle(
|
|
positions[point], align_with[point], align_handles[point]);
|
|
});
|
|
}
|
|
|
|
void calculate_auto_handles(const bool cyclic,
|
|
const Span<int8_t> types_left,
|
|
const Span<int8_t> types_right,
|
|
const Span<float3> positions,
|
|
MutableSpan<float3> positions_left,
|
|
MutableSpan<float3> positions_right)
|
|
{
|
|
const int points_num = positions.size();
|
|
if (points_num == 1) {
|
|
return;
|
|
}
|
|
|
|
calculate_point_handles(HandleType(types_left.first()),
|
|
HandleType(types_right.first()),
|
|
positions.first(),
|
|
cyclic ? positions.last() : 2.0f * positions.first() - positions[1],
|
|
positions[1],
|
|
positions_left.first(),
|
|
positions_right.first());
|
|
|
|
threading::parallel_for(IndexRange(1, points_num - 2), 1024, [&](IndexRange range) {
|
|
for (const int i : range) {
|
|
calculate_point_handles(HandleType(types_left[i]),
|
|
HandleType(types_right[i]),
|
|
positions[i],
|
|
positions[i - 1],
|
|
positions[i + 1],
|
|
positions_left[i],
|
|
positions_right[i]);
|
|
}
|
|
});
|
|
|
|
calculate_point_handles(HandleType(types_left.last()),
|
|
HandleType(types_right.last()),
|
|
positions.last(),
|
|
positions.last(1),
|
|
cyclic ? positions.first() : 2.0f * positions.last() - positions.last(1),
|
|
positions_left.last(),
|
|
positions_right.last());
|
|
}
|
|
|
|
template<typename T>
|
|
void evaluate_segment_ex(
|
|
const T &point_0, const T &point_1, const T &point_2, const T &point_3, MutableSpan<T> result)
|
|
{
|
|
BLI_assert(result.size() > 0);
|
|
const float inv_len = 1.0f / float(result.size());
|
|
const float inv_len_squared = inv_len * inv_len;
|
|
const float inv_len_cubed = inv_len_squared * inv_len;
|
|
|
|
const T rt1 = 3.0f * (point_1 - point_0) * inv_len;
|
|
const T rt2 = 3.0f * (point_0 - 2.0f * point_1 + point_2) * inv_len_squared;
|
|
const T rt3 = (point_3 - point_0 + 3.0f * (point_1 - point_2)) * inv_len_cubed;
|
|
|
|
T q0 = point_0;
|
|
T q1 = rt1 + rt2 + rt3;
|
|
T q2 = 2.0f * rt2 + 6.0f * rt3;
|
|
T q3 = 6.0f * rt3;
|
|
for (const int i : result.index_range()) {
|
|
result[i] = q0;
|
|
q0 += q1;
|
|
q1 += q2;
|
|
q2 += q3;
|
|
}
|
|
}
|
|
template<>
|
|
void evaluate_segment(const float3 &point_0,
|
|
const float3 &point_1,
|
|
const float3 &point_2,
|
|
const float3 &point_3,
|
|
MutableSpan<float3> result)
|
|
{
|
|
evaluate_segment_ex<float3>(point_0, point_1, point_2, point_3, result);
|
|
}
|
|
template<>
|
|
void evaluate_segment(const float2 &point_0,
|
|
const float2 &point_1,
|
|
const float2 &point_2,
|
|
const float2 &point_3,
|
|
MutableSpan<float2> result)
|
|
{
|
|
evaluate_segment_ex<float2>(point_0, point_1, point_2, point_3, result);
|
|
}
|
|
|
|
void calculate_evaluated_positions(const Span<float3> positions,
|
|
const Span<float3> handles_left,
|
|
const Span<float3> handles_right,
|
|
const OffsetIndices<int> evaluated_offsets,
|
|
MutableSpan<float3> evaluated_positions)
|
|
{
|
|
BLI_assert(evaluated_offsets.total_size() == evaluated_positions.size());
|
|
if (evaluated_offsets.total_size() == 1) {
|
|
evaluated_positions.first() = positions.first();
|
|
return;
|
|
}
|
|
|
|
/* Evaluate the first segment. */
|
|
evaluate_segment(positions.first(),
|
|
handles_right.first(),
|
|
handles_left[1],
|
|
positions[1],
|
|
evaluated_positions.slice(evaluated_offsets[0]));
|
|
|
|
/* Give each task fewer segments as the resolution gets larger. */
|
|
const int grain_size = std::max<int>(evaluated_positions.size() / positions.size() * 32, 1);
|
|
const IndexRange inner_segments = positions.index_range().drop_back(1).drop_front(1);
|
|
threading::parallel_for(inner_segments, grain_size, [&](IndexRange range) {
|
|
for (const int i : range) {
|
|
const IndexRange evaluated_range = evaluated_offsets[i];
|
|
if (evaluated_range.size() == 1) {
|
|
evaluated_positions[evaluated_range.first()] = positions[i];
|
|
}
|
|
else {
|
|
evaluate_segment(positions[i],
|
|
handles_right[i],
|
|
handles_left[i + 1],
|
|
positions[i + 1],
|
|
evaluated_positions.slice(evaluated_range));
|
|
}
|
|
}
|
|
});
|
|
|
|
/* Evaluate the final cyclic segment if necessary. */
|
|
const IndexRange last_segment_points = evaluated_offsets[positions.index_range().last()];
|
|
if (last_segment_points.size() == 1) {
|
|
evaluated_positions.last() = positions.last();
|
|
}
|
|
else {
|
|
evaluate_segment(positions.last(),
|
|
handles_right.last(),
|
|
handles_left.first(),
|
|
positions.first(),
|
|
evaluated_positions.slice(last_segment_points));
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static inline void linear_interpolation(const T &a, const T &b, MutableSpan<T> dst)
|
|
{
|
|
dst.first() = a;
|
|
const float step = 1.0f / dst.size();
|
|
for (const int i : dst.index_range().drop_front(1)) {
|
|
dst[i] = attribute_math::mix2(i * step, a, b);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void interpolate_to_evaluated(const Span<T> src,
|
|
const OffsetIndices<int> evaluated_offsets,
|
|
MutableSpan<T> dst)
|
|
{
|
|
BLI_assert(!src.is_empty());
|
|
BLI_assert(evaluated_offsets.total_size() == dst.size());
|
|
if (src.size() == 1) {
|
|
BLI_assert(dst.size() == 1);
|
|
dst.first() = src.first();
|
|
return;
|
|
}
|
|
|
|
linear_interpolation(src.first(), src[1], dst.slice(evaluated_offsets[0]));
|
|
|
|
threading::parallel_for(
|
|
src.index_range().drop_back(1).drop_front(1), 512, [&](IndexRange range) {
|
|
for (const int i : range) {
|
|
const IndexRange segment = evaluated_offsets[i];
|
|
linear_interpolation(src[i], src[i + 1], dst.slice(segment));
|
|
}
|
|
});
|
|
|
|
const IndexRange last_segment = evaluated_offsets[src.index_range().last()];
|
|
linear_interpolation(src.last(), src.first(), dst.slice(last_segment));
|
|
}
|
|
|
|
void interpolate_to_evaluated(const GSpan src,
|
|
const OffsetIndices<int> evaluated_offsets,
|
|
GMutableSpan dst)
|
|
{
|
|
attribute_math::convert_to_static_type(src.type(), [&](auto dummy) {
|
|
using T = decltype(dummy);
|
|
if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
|
|
interpolate_to_evaluated(src.typed<T>(), evaluated_offsets, dst.typed<T>());
|
|
}
|
|
});
|
|
}
|
|
|
|
} // namespace blender::bke::curves::bezier
|