Use METH_FASTCALL to improve performance by about 1.3x, useful as this function may be used on large datasets. Ref !146490
1894 lines
61 KiB
C++
1894 lines
61 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup pymathutils
|
|
*/
|
|
|
|
#include <Python.h>
|
|
|
|
#include "mathutils.hh"
|
|
#include "mathutils_geometry.hh"
|
|
|
|
/* Used for PolyFill */
|
|
#ifndef MATH_STANDALONE /* define when building outside blender */
|
|
# include "BLI_boxpack_2d.h"
|
|
# include "BLI_convexhull_2d.hh"
|
|
# include "BLI_delaunay_2d.hh"
|
|
# include "BLI_listbase.h"
|
|
|
|
# include "BKE_curve.hh"
|
|
# include "BKE_displist.h"
|
|
|
|
# include "MEM_guardedalloc.h"
|
|
#endif /* !MATH_STANDALONE */
|
|
|
|
#include "BLI_math_geom.h"
|
|
#include "BLI_math_vector.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "../generic/py_capi_utils.hh"
|
|
#include "../generic/python_utildefines.hh"
|
|
|
|
/* ---------------------------------INTERSECTION FUNCTIONS-------------------- */
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_ray_tri_doc,
|
|
".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True, /)\n"
|
|
"\n"
|
|
" Returns the intersection between a ray and a triangle, if possible, returns None "
|
|
"otherwise.\n"
|
|
"\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :arg ray: Direction of the projection\n"
|
|
" :type ray: :class:`mathutils.Vector`\n"
|
|
" :arg orig: Origin\n"
|
|
" :type orig: :class:`mathutils.Vector`\n"
|
|
" :arg clip: When False, don't restrict the intersection to the area of the "
|
|
"triangle, use the infinite plane defined by the triangle.\n"
|
|
" :type clip: bool\n"
|
|
" :return: The point of intersection or None if no intersection is found\n"
|
|
" :rtype: :class:`mathutils.Vector` | None\n");
|
|
static PyObject *M_Geometry_intersect_ray_tri(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_ray_tri";
|
|
PyObject *py_ray, *py_ray_off, *py_tri[3];
|
|
float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
|
|
float det, inv_det, u, v, t;
|
|
bool clip = true;
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOOO|O&:intersect_ray_tri",
|
|
UNPACK3_EX(&, py_tri, ),
|
|
&py_ray,
|
|
&py_ray_off,
|
|
PyC_ParseBool,
|
|
&clip))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) !=
|
|
-1) &&
|
|
(mathutils_array_parse(
|
|
orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tri); i++) {
|
|
if (mathutils_array_parse(
|
|
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
normalize_v3(dir);
|
|
|
|
/* find vectors for two edges sharing v1 */
|
|
sub_v3_v3v3(e1, tri[1], tri[0]);
|
|
sub_v3_v3v3(e2, tri[2], tri[0]);
|
|
|
|
/* begin calculating determinant - also used to calculated U parameter */
|
|
cross_v3_v3v3(pvec, dir, e2);
|
|
|
|
/* if determinant is near zero, ray lies in plane of triangle */
|
|
det = dot_v3v3(e1, pvec);
|
|
|
|
if (det > -0.000001f && det < 0.000001f) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
inv_det = 1.0f / det;
|
|
|
|
/* calculate distance from v1 to ray origin */
|
|
sub_v3_v3v3(tvec, orig, tri[0]);
|
|
|
|
/* calculate U parameter and test bounds */
|
|
u = dot_v3v3(tvec, pvec) * inv_det;
|
|
if (clip && (u < 0.0f || u > 1.0f)) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* prepare to test the V parameter */
|
|
cross_v3_v3v3(qvec, tvec, e1);
|
|
|
|
/* calculate V parameter and test bounds */
|
|
v = dot_v3v3(dir, qvec) * inv_det;
|
|
|
|
if (clip && (v < 0.0f || u + v > 1.0f)) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* calculate t, ray intersects triangle */
|
|
t = dot_v3v3(e2, qvec) * inv_det;
|
|
|
|
/* ray hit behind */
|
|
if (t < 0.0f) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
mul_v3_fl(dir, t);
|
|
add_v3_v3v3(pvec, orig, dir);
|
|
|
|
return Vector_CreatePyObject(pvec, 3, nullptr);
|
|
}
|
|
|
|
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_line_line_doc,
|
|
".. function:: intersect_line_line(v1, v2, v3, v4, /)\n"
|
|
"\n"
|
|
" Returns a tuple with the points on each line respectively closest to the other.\n"
|
|
"\n"
|
|
" :arg v1: First point of the first line\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Second point of the first line\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: First point of the second line\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :arg v4: Second point of the second line\n"
|
|
" :type v4: :class:`mathutils.Vector`\n"
|
|
" :return: The intersection on each line or None when the lines are co-linear.\n"
|
|
" :rtype: tuple[:class:`mathutils.Vector`, :class:`mathutils.Vector`] | None\n");
|
|
static PyObject *M_Geometry_intersect_line_line(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_line_line";
|
|
PyObject *tuple;
|
|
PyObject *py_lines[4];
|
|
float lines[4][3], i1[3], i2[3];
|
|
int ix_vec_num;
|
|
int result;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line", UNPACK4_EX(&, py_lines, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
if ((((ix_vec_num = mathutils_array_parse(
|
|
lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) &&
|
|
(mathutils_array_parse(lines[1],
|
|
ix_vec_num,
|
|
ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO,
|
|
py_lines[1],
|
|
error_prefix) != -1) &&
|
|
(mathutils_array_parse(lines[2],
|
|
ix_vec_num,
|
|
ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO,
|
|
py_lines[2],
|
|
error_prefix) != -1) &&
|
|
(mathutils_array_parse(lines[3],
|
|
ix_vec_num,
|
|
ix_vec_num | MU_ARRAY_SPILL | MU_ARRAY_ZERO,
|
|
py_lines[3],
|
|
error_prefix) != -1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
/* Zero 3rd axis of 2D vectors. */
|
|
if (ix_vec_num == 2) {
|
|
lines[1][2] = 0.0f;
|
|
lines[2][2] = 0.0f;
|
|
lines[3][2] = 0.0f;
|
|
}
|
|
|
|
result = isect_line_line_v3(UNPACK4(lines), i1, i2);
|
|
/* The return-code isn't exposed,
|
|
* this way we can check know how close the lines are. */
|
|
if (result == 1) {
|
|
closest_to_line_v3(i2, i1, lines[2], lines[3]);
|
|
}
|
|
|
|
if (result == 0) {
|
|
/* Collinear. */
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
tuple = PyTuple_New(2);
|
|
PyTuple_SET_ITEMS(tuple,
|
|
Vector_CreatePyObject(i1, ix_vec_num, nullptr),
|
|
Vector_CreatePyObject(i2, ix_vec_num, nullptr));
|
|
return tuple;
|
|
}
|
|
|
|
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_sphere_sphere_2d_doc,
|
|
".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b, /)\n"
|
|
"\n"
|
|
" Returns 2 points on between intersecting circles.\n"
|
|
"\n"
|
|
" :arg p_a: Center of the first circle\n"
|
|
" :type p_a: :class:`mathutils.Vector`\n"
|
|
" :arg radius_a: Radius of the first circle\n"
|
|
" :type radius_a: float\n"
|
|
" :arg p_b: Center of the second circle\n"
|
|
" :type p_b: :class:`mathutils.Vector`\n"
|
|
" :arg radius_b: Radius of the second circle\n"
|
|
" :type radius_b: float\n"
|
|
" :return: 2 points on between intersecting circles or None when there is no intersection.\n"
|
|
" :rtype: tuple[:class:`mathutils.Vector`, :class:`mathutils.Vector`] | "
|
|
"tuple[None, None]\n");
|
|
static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_sphere_sphere_2d";
|
|
PyObject *ret;
|
|
PyObject *py_v_a, *py_v_b;
|
|
float v_a[2], v_b[2];
|
|
float rad_a, rad_b;
|
|
float v_ab[2];
|
|
float dist;
|
|
|
|
if (!PyArg_ParseTuple(args, "OfOf:intersect_sphere_sphere_2d", &py_v_a, &rad_a, &py_v_b, &rad_b))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) &&
|
|
(mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
ret = PyTuple_New(2);
|
|
|
|
sub_v2_v2v2(v_ab, v_b, v_a);
|
|
dist = len_v2(v_ab);
|
|
|
|
if (/* out of range */
|
|
(dist > rad_a + rad_b) ||
|
|
/* fully-contained in the other */
|
|
(dist < fabsf(rad_a - rad_b)) ||
|
|
/* co-incident */
|
|
(dist < FLT_EPSILON))
|
|
{
|
|
/* out of range */
|
|
PyTuple_SET_ITEMS(ret, Py_NewRef(Py_None), Py_NewRef(Py_None));
|
|
}
|
|
else {
|
|
const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
|
|
const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
|
|
float i_cent[2];
|
|
float i1[2], i2[2];
|
|
|
|
i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
|
|
i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);
|
|
|
|
i1[0] = i_cent[0] + h * v_ab[1] / dist;
|
|
i1[1] = i_cent[1] - h * v_ab[0] / dist;
|
|
|
|
i2[0] = i_cent[0] - h * v_ab[1] / dist;
|
|
i2[1] = i_cent[1] + h * v_ab[0] / dist;
|
|
|
|
PyTuple_SET_ITEMS(
|
|
ret, Vector_CreatePyObject(i1, 2, nullptr), Vector_CreatePyObject(i2, 2, nullptr));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_tri_tri_2d_doc,
|
|
".. function:: intersect_tri_tri_2d(tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3, /)\n"
|
|
"\n"
|
|
" Check if two 2D triangles intersect.\n"
|
|
"\n"
|
|
" :rtype: bool\n");
|
|
static PyObject *M_Geometry_intersect_tri_tri_2d(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_tri_tri_2d";
|
|
PyObject *tri_pair_py[2][3];
|
|
float tri_pair[2][3][2];
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOOOO:intersect_tri_tri_2d",
|
|
&tri_pair_py[0][0],
|
|
&tri_pair_py[0][1],
|
|
&tri_pair_py[0][2],
|
|
&tri_pair_py[1][0],
|
|
&tri_pair_py[1][1],
|
|
&tri_pair_py[1][2]))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
if (mathutils_array_parse(
|
|
tri_pair[i][j], 2, 2 | MU_ARRAY_SPILL, tri_pair_py[i][j], error_prefix) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
const bool ret = isect_tri_tri_v2(UNPACK3(tri_pair[0]), UNPACK3(tri_pair[1]));
|
|
return PyBool_FromLong(ret);
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_normal_doc,
|
|
".. function:: normal(*vectors)\n"
|
|
"\n"
|
|
" Returns the normal of a 3D polygon.\n"
|
|
"\n"
|
|
" :arg vectors: 3 or more vectors to calculate normals.\n"
|
|
" :type vectors: Sequence[Sequence[float]]\n"
|
|
" :rtype: :class:`mathutils.Vector`\n");
|
|
static PyObject *M_Geometry_normal(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
float(*coords)[3];
|
|
int coords_len;
|
|
float n[3];
|
|
PyObject *ret = nullptr;
|
|
|
|
/* use */
|
|
if (PyTuple_GET_SIZE(args) == 1) {
|
|
args = PyTuple_GET_ITEM(args, 0);
|
|
}
|
|
|
|
if ((coords_len = mathutils_array_parse_alloc_v(
|
|
(float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (coords_len < 3) {
|
|
PyErr_SetString(PyExc_ValueError, "Expected 3 or more vectors");
|
|
goto finally;
|
|
}
|
|
|
|
normal_poly_v3(n, coords, coords_len);
|
|
ret = Vector_CreatePyObject(n, 3, nullptr);
|
|
|
|
finally:
|
|
PyMem_Free(coords);
|
|
return ret;
|
|
}
|
|
|
|
/* --------------------------------- AREA FUNCTIONS-------------------- */
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_area_tri_doc,
|
|
".. function:: area_tri(v1, v2, v3, /)\n"
|
|
"\n"
|
|
" Returns the area size of the 2D or 3D triangle defined.\n"
|
|
"\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :rtype: float\n");
|
|
static PyObject *M_Geometry_area_tri(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "area_tri";
|
|
PyObject *py_tri[3];
|
|
float tri[3][3];
|
|
int len;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOO:area_tri", UNPACK3_EX(&, py_tri, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) &&
|
|
(mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) &&
|
|
(mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri)));
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_volume_tetrahedron_doc,
|
|
".. function:: volume_tetrahedron(v1, v2, v3, v4, /)\n"
|
|
"\n"
|
|
" Return the volume formed by a tetrahedron (points can be in any order).\n"
|
|
"\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :arg v4: Point4\n"
|
|
" :type v4: :class:`mathutils.Vector`\n"
|
|
" :rtype: float\n");
|
|
static PyObject *M_Geometry_volume_tetrahedron(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "volume_tetrahedron";
|
|
PyObject *py_tet[4];
|
|
float tet[4][3];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO:volume_tetrahedron", UNPACK4_EX(&, py_tet, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tet); i++) {
|
|
if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet)));
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_line_line_2d_doc,
|
|
".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2, /)\n"
|
|
"\n"
|
|
" Takes 2 segments (defined by 4 vectors) and returns a vector for their point of "
|
|
"intersection or None.\n"
|
|
"\n"
|
|
" .. warning:: Despite its name, this function works on segments, and not on lines.\n"
|
|
"\n"
|
|
" :arg lineA_p1: First point of the first line\n"
|
|
" :type lineA_p1: :class:`mathutils.Vector`\n"
|
|
" :arg lineA_p2: Second point of the first line\n"
|
|
" :type lineA_p2: :class:`mathutils.Vector`\n"
|
|
" :arg lineB_p1: First point of the second line\n"
|
|
" :type lineB_p1: :class:`mathutils.Vector`\n"
|
|
" :arg lineB_p2: Second point of the second line\n"
|
|
" :type lineB_p2: :class:`mathutils.Vector`\n"
|
|
" :return: The point of intersection or None when not found\n"
|
|
" :rtype: :class:`mathutils.Vector` | None\n");
|
|
static PyObject *M_Geometry_intersect_line_line_2d(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_line_line_2d";
|
|
PyObject *py_lines[4];
|
|
float lines[4][2];
|
|
float vi[2];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO:intersect_line_line_2d", UNPACK4_EX(&, py_lines, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(lines); i++) {
|
|
if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) {
|
|
return Vector_CreatePyObject(vi, 2, nullptr);
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_line_plane_doc,
|
|
".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False, /)\n"
|
|
"\n"
|
|
" Calculate the intersection between a line (as 2 vectors) and a plane.\n"
|
|
" Returns a vector for the intersection or None.\n"
|
|
"\n"
|
|
" :arg line_a: First point of the first line\n"
|
|
" :type line_a: :class:`mathutils.Vector`\n"
|
|
" :arg line_b: Second point of the first line\n"
|
|
" :type line_b: :class:`mathutils.Vector`\n"
|
|
" :arg plane_co: A point on the plane\n"
|
|
" :type plane_co: :class:`mathutils.Vector`\n"
|
|
" :arg plane_no: The direction the plane is facing\n"
|
|
" :type plane_no: :class:`mathutils.Vector`\n"
|
|
" :arg no_flip: Not implemented\n"
|
|
" :type no_flip: bool\n"
|
|
" :return: The point of intersection or None when not found\n"
|
|
" :rtype: :class:`mathutils.Vector` | None\n");
|
|
static PyObject *M_Geometry_intersect_line_plane(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_line_plane";
|
|
PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no;
|
|
float line_a[3], line_b[3], plane_co[3], plane_no[3];
|
|
float isect[3];
|
|
const bool no_flip = false;
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOO|O&:intersect_line_plane",
|
|
&py_line_a,
|
|
&py_line_b,
|
|
&py_plane_co,
|
|
&py_plane_no,
|
|
PyC_ParseBool,
|
|
&no_flip))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
|
|
(mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
|
|
(mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
|
|
(mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
|
|
-1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
/* TODO: implements no_flip */
|
|
if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) {
|
|
return Vector_CreatePyObject(isect, 3, nullptr);
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_plane_plane_doc,
|
|
".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no, /)\n"
|
|
"\n"
|
|
" Return the intersection between two planes\n"
|
|
"\n"
|
|
" :arg plane_a_co: Point on the first plane\n"
|
|
" :type plane_a_co: :class:`mathutils.Vector`\n"
|
|
" :arg plane_a_no: Normal of the first plane\n"
|
|
" :type plane_a_no: :class:`mathutils.Vector`\n"
|
|
" :arg plane_b_co: Point on the second plane\n"
|
|
" :type plane_b_co: :class:`mathutils.Vector`\n"
|
|
" :arg plane_b_no: Normal of the second plane\n"
|
|
" :type plane_b_no: :class:`mathutils.Vector`\n"
|
|
" :return: The line of the intersection represented as a point and a vector or None if the "
|
|
"intersection can't be calculated\n"
|
|
" :rtype: tuple[:class:`mathutils.Vector`, :class:`mathutils.Vector`] | "
|
|
"tuple[None, None]\n");
|
|
static PyObject *M_Geometry_intersect_plane_plane(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_plane_plane";
|
|
PyObject *ret, *ret_co, *ret_no;
|
|
PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no;
|
|
float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3];
|
|
float plane_a[4], plane_b[4];
|
|
|
|
float isect_co[3];
|
|
float isect_no[3];
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOO:intersect_plane_plane",
|
|
&py_plane_a_co,
|
|
&py_plane_a_no,
|
|
&py_plane_b_co,
|
|
&py_plane_b_no))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) !=
|
|
-1) &&
|
|
(mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) !=
|
|
-1) &&
|
|
(mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) !=
|
|
-1) &&
|
|
(mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) !=
|
|
-1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no);
|
|
plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no);
|
|
|
|
if (isect_plane_plane_v3(plane_a, plane_b, isect_co, isect_no)) {
|
|
normalize_v3(isect_no);
|
|
|
|
ret_co = Vector_CreatePyObject(isect_co, 3, nullptr);
|
|
ret_no = Vector_CreatePyObject(isect_no, 3, nullptr);
|
|
}
|
|
else {
|
|
ret_co = Py_NewRef(Py_None);
|
|
ret_no = Py_NewRef(Py_None);
|
|
}
|
|
|
|
ret = PyTuple_New(2);
|
|
PyTuple_SET_ITEMS(ret, ret_co, ret_no);
|
|
return ret;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_line_sphere_doc,
|
|
".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True, /)\n"
|
|
"\n"
|
|
" Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
|
|
" returns the intersection\n"
|
|
"\n"
|
|
" :arg line_a: First point of the line\n"
|
|
" :type line_a: :class:`mathutils.Vector`\n"
|
|
" :arg line_b: Second point of the line\n"
|
|
" :type line_b: :class:`mathutils.Vector`\n"
|
|
" :arg sphere_co: The center of the sphere\n"
|
|
" :type sphere_co: :class:`mathutils.Vector`\n"
|
|
" :arg sphere_radius: Radius of the sphere\n"
|
|
" :type sphere_radius: float\n"
|
|
" :arg clip: When False, don't restrict the intersection to the area of the "
|
|
"sphere.\n"
|
|
" :type clip: bool\n"
|
|
" :return: The intersection points as a pair of vectors or None when there is no "
|
|
"intersection\n"
|
|
" :rtype: tuple[:class:`mathutils.Vector` | None, :class:`mathutils.Vector` | None]\n");
|
|
static PyObject *M_Geometry_intersect_line_sphere(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_line_sphere";
|
|
PyObject *py_line_a, *py_line_b, *py_sphere_co;
|
|
float line_a[3], line_b[3], sphere_co[3];
|
|
float sphere_radius;
|
|
bool clip = true;
|
|
|
|
float isect_a[3];
|
|
float isect_b[3];
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOf|O&:intersect_line_sphere",
|
|
&py_line_a,
|
|
&py_line_b,
|
|
&py_sphere_co,
|
|
&sphere_radius,
|
|
PyC_ParseBool,
|
|
&clip))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
|
|
(mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
|
|
(mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
|
|
-1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
bool use_a = true;
|
|
bool use_b = true;
|
|
float lambda;
|
|
|
|
PyObject *ret = PyTuple_New(2);
|
|
|
|
switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
|
|
case 1:
|
|
if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
|
|
(lambda <= 1.0f))))
|
|
{
|
|
use_a = false;
|
|
}
|
|
use_b = false;
|
|
break;
|
|
case 2:
|
|
if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) &&
|
|
(lambda <= 1.0f))))
|
|
{
|
|
use_a = false;
|
|
}
|
|
if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) &&
|
|
(lambda <= 1.0f))))
|
|
{
|
|
use_b = false;
|
|
}
|
|
break;
|
|
default:
|
|
use_a = false;
|
|
use_b = false;
|
|
break;
|
|
}
|
|
|
|
PyTuple_SET_ITEMS(ret,
|
|
use_a ? Vector_CreatePyObject(isect_a, 3, nullptr) : Py_NewRef(Py_None),
|
|
use_b ? Vector_CreatePyObject(isect_b, 3, nullptr) : Py_NewRef(Py_None));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* keep in sync with M_Geometry_intersect_line_sphere */
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_line_sphere_2d_doc,
|
|
".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, "
|
|
"sphere_radius, clip=True, /)\n"
|
|
"\n"
|
|
" Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
|
|
" returns the intersection\n"
|
|
"\n"
|
|
" :arg line_a: First point of the line\n"
|
|
" :type line_a: :class:`mathutils.Vector`\n"
|
|
" :arg line_b: Second point of the line\n"
|
|
" :type line_b: :class:`mathutils.Vector`\n"
|
|
" :arg sphere_co: The center of the sphere\n"
|
|
" :type sphere_co: :class:`mathutils.Vector`\n"
|
|
" :arg sphere_radius: Radius of the sphere\n"
|
|
" :type sphere_radius: float\n"
|
|
" :arg clip: When False, don't restrict the intersection to the area of the "
|
|
"sphere.\n"
|
|
" :type clip: bool\n"
|
|
" :return: The intersection points as a pair of vectors or None when there is no "
|
|
"intersection\n"
|
|
" :rtype: tuple[:class:`mathutils.Vector` | None, :class:`mathutils.Vector` | None]\n");
|
|
static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_line_sphere_2d";
|
|
PyObject *py_line_a, *py_line_b, *py_sphere_co;
|
|
float line_a[2], line_b[2], sphere_co[2];
|
|
float sphere_radius;
|
|
bool clip = true;
|
|
|
|
float isect_a[2];
|
|
float isect_b[2];
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOf|O&:intersect_line_sphere_2d",
|
|
&py_line_a,
|
|
&py_line_b,
|
|
&py_sphere_co,
|
|
&sphere_radius,
|
|
PyC_ParseBool,
|
|
&clip))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
|
|
(mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
|
|
(mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) !=
|
|
-1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
bool use_a = true;
|
|
bool use_b = true;
|
|
float lambda;
|
|
|
|
PyObject *ret = PyTuple_New(2);
|
|
|
|
switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
|
|
case 1:
|
|
if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
|
|
(lambda <= 1.0f))))
|
|
{
|
|
use_a = false;
|
|
}
|
|
use_b = false;
|
|
break;
|
|
case 2:
|
|
if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) &&
|
|
(lambda <= 1.0f))))
|
|
{
|
|
use_a = false;
|
|
}
|
|
if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) &&
|
|
(lambda <= 1.0f))))
|
|
{
|
|
use_b = false;
|
|
}
|
|
break;
|
|
default:
|
|
use_a = false;
|
|
use_b = false;
|
|
break;
|
|
}
|
|
|
|
PyTuple_SET_ITEMS(ret,
|
|
use_a ? Vector_CreatePyObject(isect_a, 2, nullptr) : Py_NewRef(Py_None),
|
|
use_b ? Vector_CreatePyObject(isect_b, 2, nullptr) : Py_NewRef(Py_None));
|
|
|
|
return ret;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_point_line_doc,
|
|
".. function:: intersect_point_line(pt, line_p1, line_p2, /)\n"
|
|
"\n"
|
|
" Takes a point and a line and returns the closest point on the line and its "
|
|
"distance from the first point of the line as a percentage of the length of the line.\n"
|
|
"\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg line_p1: First point of the line\n"
|
|
" :type line_p1: :class:`mathutils.Vector`\n"
|
|
" :arg line_p2: Second point of the line\n"
|
|
" :type line_p2: :class:`mathutils.Vector`\n"
|
|
" :rtype: tuple[:class:`mathutils.Vector`, float]\n");
|
|
static PyObject *M_Geometry_intersect_point_line(PyObject * /*self*/,
|
|
PyObject *const *args,
|
|
Py_ssize_t nargs)
|
|
{
|
|
const char *error_prefix = "intersect_point_line";
|
|
float pt[3], pt_out[3], line_a[3], line_b[3];
|
|
int pt_num = 2;
|
|
|
|
if (!_PyArg_CheckPositional(error_prefix, nargs, 3, 3)) {
|
|
return nullptr;
|
|
}
|
|
|
|
PyObject *py_pt = args[0];
|
|
PyObject *py_line_a = args[1];
|
|
PyObject *py_line_b = args[2];
|
|
|
|
/* Accept 2D verts. */
|
|
if ((((pt_num = mathutils_array_parse(
|
|
pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) &&
|
|
(mathutils_array_parse(
|
|
line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) &&
|
|
(mathutils_array_parse(
|
|
line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
/* Do the calculation. */
|
|
const float lambda = closest_to_line_v3(pt_out, pt, line_a, line_b);
|
|
|
|
PyObject *ret = PyTuple_New(2);
|
|
PyTuple_SET_ITEMS(
|
|
ret, Vector_CreatePyObject(pt_out, pt_num, nullptr), PyFloat_FromDouble(lambda));
|
|
return ret;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_point_tri_doc,
|
|
".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3, /)\n"
|
|
"\n"
|
|
" Takes 4 vectors: one is the point and the next 3 define the triangle. Projects "
|
|
"the point onto the triangle plane and checks if it is within the triangle.\n"
|
|
"\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p1: First point of the triangle\n"
|
|
" :type tri_p1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p2: Second point of the triangle\n"
|
|
" :type tri_p2: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p3: Third point of the triangle\n"
|
|
" :type tri_p3: :class:`mathutils.Vector`\n"
|
|
" :return: Point on the triangles plane or None if its outside the triangle\n"
|
|
" :rtype: :class:`mathutils.Vector` | None\n");
|
|
static PyObject *M_Geometry_intersect_point_tri(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_point_tri";
|
|
PyObject *py_pt, *py_tri[3];
|
|
float pt[3], tri[3][3];
|
|
float vi[3];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(tri); i++) {
|
|
if (mathutils_array_parse(
|
|
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) {
|
|
return Vector_CreatePyObject(vi, 3, nullptr);
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_closest_point_on_tri_doc,
|
|
".. function:: closest_point_on_tri(pt, tri_p1, tri_p2, tri_p3, /)\n"
|
|
"\n"
|
|
" Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
|
|
"\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p1: First point of the triangle\n"
|
|
" :type tri_p1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p2: Second point of the triangle\n"
|
|
" :type tri_p2: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p3: Third point of the triangle\n"
|
|
" :type tri_p3: :class:`mathutils.Vector`\n"
|
|
" :return: The closest point of the triangle.\n"
|
|
" :rtype: :class:`mathutils.Vector`\n");
|
|
static PyObject *M_Geometry_closest_point_on_tri(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "closest_point_on_tri";
|
|
PyObject *py_pt, *py_tri[3];
|
|
float pt[3], tri[3][3];
|
|
float vi[3];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO:closest_point_on_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(tri); i++) {
|
|
if (mathutils_array_parse(
|
|
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
closest_on_tri_to_point_v3(vi, pt, UNPACK3(tri));
|
|
|
|
return Vector_CreatePyObject(vi, 3, nullptr);
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_point_tri_2d_doc,
|
|
".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3, /)\n"
|
|
"\n"
|
|
" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 "
|
|
"define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
|
|
"\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p1: First point of the triangle\n"
|
|
" :type tri_p1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p2: Second point of the triangle\n"
|
|
" :type tri_p2: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p3: Third point of the triangle\n"
|
|
" :type tri_p3: :class:`mathutils.Vector`\n"
|
|
" :rtype: int\n");
|
|
static PyObject *M_Geometry_intersect_point_tri_2d(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_point_tri_2d";
|
|
PyObject *py_pt, *py_tri[3];
|
|
float pt[2], tri[3][2];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOO:intersect_point_tri_2d", &py_pt, UNPACK3_EX(&, py_tri, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(tri); i++) {
|
|
if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri)));
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_intersect_point_quad_2d_doc,
|
|
".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4, /)\n"
|
|
"\n"
|
|
" Takes 5 vectors (using only the x and y coordinates): one is the point and the "
|
|
"next 4 define the quad,\n"
|
|
" only the x and y are used from the vectors. Returns 1 if the point is within the "
|
|
"quad, otherwise 0.\n"
|
|
" Works only with convex quads without singular edges.\n"
|
|
"\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p1: First point of the quad\n"
|
|
" :type quad_p1: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p2: Second point of the quad\n"
|
|
" :type quad_p2: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p3: Third point of the quad\n"
|
|
" :type quad_p3: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p4: Fourth point of the quad\n"
|
|
" :type quad_p4: :class:`mathutils.Vector`\n"
|
|
" :rtype: int\n");
|
|
static PyObject *M_Geometry_intersect_point_quad_2d(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "intersect_point_quad_2d";
|
|
PyObject *py_pt, *py_quad[4];
|
|
float pt[2], quad[4][2];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOOO:intersect_point_quad_2d", &py_pt, UNPACK4_EX(&, py_quad, ))) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(quad); i++) {
|
|
if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad)));
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_distance_point_to_plane_doc,
|
|
".. function:: distance_point_to_plane(pt, plane_co, plane_no, /)\n"
|
|
"\n"
|
|
" Returns the signed distance between a point and a plane "
|
|
" (negative when below the normal).\n"
|
|
"\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg plane_co: A point on the plane\n"
|
|
" :type plane_co: :class:`mathutils.Vector`\n"
|
|
" :arg plane_no: The direction the plane is facing\n"
|
|
" :type plane_no: :class:`mathutils.Vector`\n"
|
|
" :rtype: float\n");
|
|
static PyObject *M_Geometry_distance_point_to_plane(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "distance_point_to_plane";
|
|
PyObject *py_pt, *py_plane_co, *py_plane_no;
|
|
float pt[3], plane_co[3], plane_no[3];
|
|
float plane[4];
|
|
|
|
if (!PyArg_ParseTuple(args, "OOO:distance_point_to_plane", &py_pt, &py_plane_co, &py_plane_no)) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (((mathutils_array_parse(pt, 3, 3 | MU_ARRAY_SPILL, py_pt, error_prefix) != -1) &&
|
|
(mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
|
|
(mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) !=
|
|
-1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
plane_from_point_normal_v3(plane, plane_co, plane_no);
|
|
return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane));
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_barycentric_transform_doc,
|
|
".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3, "
|
|
"/)\n"
|
|
"\n"
|
|
" Return a transformed point, the transformation is defined by 2 triangles.\n"
|
|
"\n"
|
|
" :arg point: The point to transform.\n"
|
|
" :type point: :class:`mathutils.Vector`\n"
|
|
" :arg tri_a1: source triangle vertex.\n"
|
|
" :type tri_a1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_a2: source triangle vertex.\n"
|
|
" :type tri_a2: :class:`mathutils.Vector`\n"
|
|
" :arg tri_a3: source triangle vertex.\n"
|
|
" :type tri_a3: :class:`mathutils.Vector`\n"
|
|
" :arg tri_b1: target triangle vertex.\n"
|
|
" :type tri_b1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_b2: target triangle vertex.\n"
|
|
" :type tri_b2: :class:`mathutils.Vector`\n"
|
|
" :arg tri_b3: target triangle vertex.\n"
|
|
" :type tri_b3: :class:`mathutils.Vector`\n"
|
|
" :return: The transformed point\n"
|
|
" :rtype: :class:`mathutils.Vector`\n");
|
|
static PyObject *M_Geometry_barycentric_transform(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "barycentric_transform";
|
|
PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3];
|
|
float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3];
|
|
int i;
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOOOOO:barycentric_transform",
|
|
&py_pt_src,
|
|
UNPACK3_EX(&, py_tri_src, ),
|
|
UNPACK3_EX(&, py_tri_dst, )))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) {
|
|
return nullptr;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(tri_src); i++) {
|
|
if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) !=
|
|
-1) &&
|
|
(mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) !=
|
|
-1)) == 0)
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
transform_point_by_tri_v3(pt_dst, pt_src, UNPACK3(tri_dst), UNPACK3(tri_src));
|
|
|
|
return Vector_CreatePyObject(pt_dst, 3, nullptr);
|
|
}
|
|
|
|
struct PointsInPlanes_UserData {
|
|
PyObject *py_verts;
|
|
char *planes_used;
|
|
};
|
|
|
|
static void points_in_planes_fn(const float co[3], int i, int j, int k, void *user_data_p)
|
|
{
|
|
PointsInPlanes_UserData *user_data = static_cast<PointsInPlanes_UserData *>(user_data_p);
|
|
PyList_APPEND(user_data->py_verts, Vector_CreatePyObject(co, 3, nullptr));
|
|
user_data->planes_used[i] = true;
|
|
user_data->planes_used[j] = true;
|
|
user_data->planes_used[k] = true;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_points_in_planes_doc,
|
|
".. function:: points_in_planes(planes, epsilon_coplanar=1e-4, epsilon_isect=1e-6, /)\n"
|
|
"\n"
|
|
" Returns a list of points inside all planes given and a list of index values for "
|
|
"the planes used.\n"
|
|
"\n"
|
|
" :arg planes: List of planes (4D vectors).\n"
|
|
" :type planes: list[:class:`mathutils.Vector`]\n"
|
|
" :arg epsilon_coplanar: Epsilon value for interpreting plane pairs as co-plannar.\n"
|
|
" :type epsilon_coplanar: float\n"
|
|
" :arg epsilon_isect: Epsilon value for intersection.\n"
|
|
" :type epsilon_isect: float\n"
|
|
" :return: Two lists, once containing the 3D coordinates inside the planes, "
|
|
"another containing the plane indices used.\n"
|
|
" :rtype: tuple[list[:class:`mathutils.Vector`], list[int]]\n");
|
|
static PyObject *M_Geometry_points_in_planes(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
PyObject *py_planes;
|
|
float(*planes)[4];
|
|
float eps_coplanar = 1e-4f;
|
|
float eps_isect = 1e-6f;
|
|
uint planes_len;
|
|
|
|
if (!PyArg_ParseTuple(args, "O|ff:points_in_planes", &py_planes, &eps_coplanar, &eps_isect)) {
|
|
return nullptr;
|
|
}
|
|
|
|
if ((planes_len = mathutils_array_parse_alloc_v(
|
|
(float **)&planes, 4, py_planes, "points_in_planes")) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
/* NOTE: this could be refactored into plain C easy - py bits are noted. */
|
|
|
|
PointsInPlanes_UserData user_data{};
|
|
user_data.py_verts = PyList_New(0);
|
|
user_data.planes_used = static_cast<char *>(PyMem_Malloc(sizeof(char) * planes_len));
|
|
|
|
/* python */
|
|
PyObject *py_plane_index = PyList_New(0);
|
|
|
|
memset(user_data.planes_used, 0, sizeof(char) * planes_len);
|
|
|
|
const bool has_isect = isect_planes_v3_fn(
|
|
planes, planes_len, eps_coplanar, eps_isect, points_in_planes_fn, &user_data);
|
|
PyMem_Free(planes);
|
|
|
|
/* Now make user_data list of used planes. */
|
|
if (has_isect) {
|
|
for (int i = 0; i < planes_len; i++) {
|
|
if (user_data.planes_used[i]) {
|
|
PyList_APPEND(py_plane_index, PyLong_FromLong(i));
|
|
}
|
|
}
|
|
}
|
|
PyMem_Free(user_data.planes_used);
|
|
|
|
{
|
|
PyObject *ret = PyTuple_New(2);
|
|
PyTuple_SET_ITEMS(ret, user_data.py_verts, py_plane_index);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
#ifndef MATH_STANDALONE
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_interpolate_bezier_doc,
|
|
".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution, /)\n"
|
|
"\n"
|
|
" Interpolate a bezier spline segment.\n"
|
|
"\n"
|
|
" :arg knot1: First bezier spline point.\n"
|
|
" :type knot1: :class:`mathutils.Vector`\n"
|
|
" :arg handle1: First bezier spline handle.\n"
|
|
" :type handle1: :class:`mathutils.Vector`\n"
|
|
" :arg handle2: Second bezier spline handle.\n"
|
|
" :type handle2: :class:`mathutils.Vector`\n"
|
|
" :arg knot2: Second bezier spline point.\n"
|
|
" :type knot2: :class:`mathutils.Vector`\n"
|
|
" :arg resolution: Number of points to return.\n"
|
|
" :type resolution: int\n"
|
|
" :return: The interpolated points.\n"
|
|
" :rtype: list[:class:`mathutils.Vector`]\n");
|
|
static PyObject *M_Geometry_interpolate_bezier(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
const char *error_prefix = "interpolate_bezier";
|
|
PyObject *py_data[4];
|
|
float data[4][4] = {{0.0f}};
|
|
int resolu;
|
|
int dims = 0;
|
|
int i;
|
|
float *coord_array, *fp;
|
|
PyObject *list;
|
|
|
|
if (!PyArg_ParseTuple(args, "OOOOi:interpolate_bezier", UNPACK4_EX(&, py_data, ), &resolu)) {
|
|
return nullptr;
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int dims_tmp;
|
|
if ((dims_tmp = mathutils_array_parse(
|
|
data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1)
|
|
{
|
|
return nullptr;
|
|
}
|
|
dims = max_ii(dims, dims_tmp);
|
|
}
|
|
|
|
if (resolu <= 1) {
|
|
PyErr_SetString(PyExc_ValueError, "resolution must be 2 or over");
|
|
return nullptr;
|
|
}
|
|
|
|
coord_array = MEM_calloc_arrayN<float>(size_t(dims) * size_t(resolu), error_prefix);
|
|
for (i = 0; i < dims; i++) {
|
|
BKE_curve_forward_diff_bezier(
|
|
UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims);
|
|
}
|
|
|
|
list = PyList_New(resolu);
|
|
fp = coord_array;
|
|
for (i = 0; i < resolu; i++, fp = fp + dims) {
|
|
PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, nullptr));
|
|
}
|
|
MEM_freeN(coord_array);
|
|
return list;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_tessellate_polygon_doc,
|
|
".. function:: tessellate_polygon(polylines, /)\n"
|
|
"\n"
|
|
" Takes a list of polylines (each point a pair or triplet of numbers) and returns "
|
|
"the point indices for a polyline filled with triangles. Does not handle degenerate "
|
|
"geometry (such as zero-length lines due to consecutive identical points).\n"
|
|
"\n"
|
|
" :arg polylines: Polygons where each polygon is a sequence of 2D or 3D points.\n"
|
|
" :type polylines: Sequence[Sequence[Sequence[float]]]"
|
|
" :return: A list of triangles.\n"
|
|
" :rtype: list[tuple[int, int, int]]\n");
|
|
/* PolyFill function, uses Blenders scan-fill to fill multiple poly lines. */
|
|
static PyObject *M_Geometry_tessellate_polygon(PyObject * /*self*/, PyObject *polyLineSeq)
|
|
{
|
|
PyObject *tri_list; /* Return this list of triangles. */
|
|
PyObject *polyLine, *polyVec;
|
|
int i, len_polylines, len_polypoints;
|
|
bool list_parse_error = false;
|
|
bool is_2d = true;
|
|
|
|
/* Display #ListBase. */
|
|
ListBase dispbase = {nullptr, nullptr};
|
|
DispList *dl;
|
|
float *fp; /* Pointer to the array of malloced dl->verts to set the points from the vectors. */
|
|
int totpoints = 0;
|
|
|
|
if (!PySequence_Check(polyLineSeq)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines");
|
|
return nullptr;
|
|
}
|
|
|
|
len_polylines = PySequence_Size(polyLineSeq);
|
|
|
|
for (i = 0; i < len_polylines; i++) {
|
|
polyLine = PySequence_GetItem(polyLineSeq, i);
|
|
if (!PySequence_Check(polyLine)) {
|
|
BKE_displist_free(&dispbase);
|
|
Py_XDECREF(polyLine); /* May be null so use #Py_XDECREF. */
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"One or more of the polylines is not a sequence of mathutils.Vector's");
|
|
return nullptr;
|
|
}
|
|
|
|
len_polypoints = PySequence_Size(polyLine);
|
|
if (len_polypoints > 0) { /* don't bother adding edges as polylines */
|
|
dl = MEM_callocN<DispList>("poly disp");
|
|
BLI_addtail(&dispbase, dl);
|
|
dl->nr = len_polypoints;
|
|
dl->type = DL_POLY;
|
|
dl->parts = 1; /* no faces, 1 edge loop */
|
|
dl->col = 0; /* no material */
|
|
dl->verts = fp = MEM_malloc_arrayN<float>(3 * size_t(len_polypoints), "dl verts");
|
|
dl->index = MEM_calloc_arrayN<int>(3 * size_t(len_polypoints), "dl index");
|
|
|
|
for (int index = 0; index < len_polypoints; index++, fp += 3) {
|
|
polyVec = PySequence_GetItem(polyLine, index);
|
|
const int polyVec_len = mathutils_array_parse(
|
|
fp, 2, 3 | MU_ARRAY_SPILL, polyVec, "tessellate_polygon: parse coord");
|
|
Py_DECREF(polyVec);
|
|
|
|
if (UNLIKELY(polyVec_len == -1)) {
|
|
list_parse_error = true;
|
|
}
|
|
else if (polyVec_len == 2) {
|
|
fp[2] = 0.0f;
|
|
}
|
|
else if (polyVec_len == 3) {
|
|
is_2d = false;
|
|
}
|
|
|
|
totpoints++;
|
|
}
|
|
}
|
|
Py_DECREF(polyLine);
|
|
}
|
|
|
|
if (list_parse_error) {
|
|
BKE_displist_free(&dispbase); /* possible some dl was allocated */
|
|
return nullptr;
|
|
}
|
|
if (totpoints) {
|
|
/* now make the list to return */
|
|
float down_vec[3] = {0, 0, -1};
|
|
BKE_displist_fill(&dispbase, &dispbase, is_2d ? down_vec : nullptr, false);
|
|
|
|
/* The faces are stored in a new DisplayList
|
|
* that's added to the head of the #ListBase. */
|
|
dl = static_cast<DispList *>(dispbase.first);
|
|
|
|
tri_list = PyList_New(dl->parts);
|
|
if (!tri_list) {
|
|
BKE_displist_free(&dispbase);
|
|
PyErr_SetString(PyExc_RuntimeError, "failed to make a new list");
|
|
return nullptr;
|
|
}
|
|
|
|
int *dl_face = dl->index;
|
|
for (int index = 0; index < dl->parts; index++) {
|
|
PyList_SET_ITEM(tri_list, index, PyC_Tuple_Pack_I32({dl_face[0], dl_face[1], dl_face[2]}));
|
|
dl_face += 3;
|
|
}
|
|
BKE_displist_free(&dispbase);
|
|
}
|
|
else {
|
|
/* no points, do this so scripts don't barf */
|
|
BKE_displist_free(&dispbase); /* possible some dl was allocated */
|
|
tri_list = PyList_New(0);
|
|
}
|
|
|
|
return tri_list;
|
|
}
|
|
|
|
static int boxPack_FromPyObject(PyObject *value, BoxPack **r_boxarray)
|
|
{
|
|
Py_ssize_t len, i;
|
|
PyObject *list_item, *item_1, *item_2;
|
|
BoxPack *boxarray;
|
|
|
|
/* Error checking must already be done */
|
|
if (!PyList_Check(value)) {
|
|
PyErr_SetString(PyExc_TypeError, "can only back a list of [x, y, w, h]");
|
|
return -1;
|
|
}
|
|
|
|
len = PyList_GET_SIZE(value);
|
|
|
|
boxarray = MEM_malloc_arrayN<BoxPack>(size_t(len), __func__);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
list_item = PyList_GET_ITEM(value, i);
|
|
if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
|
|
MEM_freeN(boxarray);
|
|
PyErr_SetString(PyExc_TypeError, "can only pack a list of [x, y, w, h]");
|
|
return -1;
|
|
}
|
|
|
|
BoxPack *box = &boxarray[i];
|
|
|
|
item_1 = PyList_GET_ITEM(list_item, 2);
|
|
item_2 = PyList_GET_ITEM(list_item, 3);
|
|
|
|
box->w = float(PyFloat_AsDouble(item_1));
|
|
box->h = float(PyFloat_AsDouble(item_2));
|
|
box->index = i;
|
|
|
|
/* accounts for error case too and overwrites with own error */
|
|
if (box->w < 0.0f || box->h < 0.0f) {
|
|
MEM_freeN(boxarray);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"error parsing width and height values from list: "
|
|
"[x, y, w, h], not numbers or below zero");
|
|
return -1;
|
|
}
|
|
|
|
/* verts will be added later */
|
|
}
|
|
|
|
*r_boxarray = boxarray;
|
|
return 0;
|
|
}
|
|
|
|
static void boxPack_ToPyObject(PyObject *value, const BoxPack *boxarray)
|
|
{
|
|
Py_ssize_t len, i;
|
|
PyObject *list_item;
|
|
|
|
len = PyList_GET_SIZE(value);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
const BoxPack *box = &boxarray[i];
|
|
list_item = PyList_GET_ITEM(value, box->index);
|
|
PyList_SetItem(list_item, 0, PyFloat_FromDouble(box->x));
|
|
PyList_SetItem(list_item, 1, PyFloat_FromDouble(box->y));
|
|
}
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_box_pack_2d_doc,
|
|
".. function:: box_pack_2d(boxes, /)\n"
|
|
"\n"
|
|
" Returns a tuple with the width and height of the packed bounding box.\n"
|
|
"\n"
|
|
" :arg boxes: list of boxes, each box is a list where the first 4 items are "
|
|
"[X, Y, width, height, ...] other items are ignored. "
|
|
"The X & Y values in this list are modified to set the packed positions.\n"
|
|
" :type boxes: list[list[float]]\n"
|
|
" :return: The width and height of the packed bounding box.\n"
|
|
" :rtype: tuple[float, float]\n");
|
|
static PyObject *M_Geometry_box_pack_2d(PyObject * /*self*/, PyObject *boxlist)
|
|
{
|
|
float tot_width = 0.0f, tot_height = 0.0f;
|
|
Py_ssize_t len;
|
|
|
|
PyObject *ret;
|
|
|
|
if (!PyList_Check(boxlist)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected a list of boxes [[x, y, w, h], ... ]");
|
|
return nullptr;
|
|
}
|
|
|
|
len = PyList_GET_SIZE(boxlist);
|
|
if (len) {
|
|
BoxPack *boxarray = nullptr;
|
|
if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
|
|
return nullptr; /* exception set */
|
|
}
|
|
|
|
const bool sort_boxes = true; /* Caution: BLI_box_pack_2d sorting is non-deterministic. */
|
|
/* Non Python function */
|
|
BLI_box_pack_2d(boxarray, len, sort_boxes, &tot_width, &tot_height);
|
|
|
|
boxPack_ToPyObject(boxlist, boxarray);
|
|
MEM_freeN(boxarray);
|
|
}
|
|
|
|
ret = PyTuple_New(2);
|
|
PyTuple_SET_ITEMS(ret, PyFloat_FromDouble(tot_width), PyFloat_FromDouble(tot_height));
|
|
return ret;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_box_fit_2d_doc,
|
|
".. function:: box_fit_2d(points, /)\n"
|
|
"\n"
|
|
" Returns an angle that best fits the points to an axis aligned rectangle\n"
|
|
"\n"
|
|
" :arg points: Sequence of 2D points.\n"
|
|
" :type points: Sequence[Sequence[float]]\n"
|
|
" :return: angle\n"
|
|
" :rtype: float\n");
|
|
static PyObject *M_Geometry_box_fit_2d(PyObject * /*self*/, PyObject *pointlist)
|
|
{
|
|
float(*points)[2];
|
|
Py_ssize_t len;
|
|
|
|
float angle = 0.0f;
|
|
|
|
len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d");
|
|
if (len == -1) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (len) {
|
|
/* Non Python function */
|
|
angle = BLI_convexhull_aabb_fit_points_2d({reinterpret_cast<blender::float2 *>(points), len});
|
|
|
|
PyMem_Free(points);
|
|
}
|
|
|
|
return PyFloat_FromDouble(angle);
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_convex_hull_2d_doc,
|
|
".. function:: convex_hull_2d(points)\n"
|
|
"\n"
|
|
" Returns a list of indices into the list given\n"
|
|
"\n"
|
|
" :arg points: Sequence of 2D points.\n"
|
|
" :type points: Sequence[Sequence[float]]\n"
|
|
" :return: a list of indices\n"
|
|
" :rtype: list[int]\n");
|
|
static PyObject *M_Geometry_convex_hull_2d(PyObject * /*self*/, PyObject *pointlist)
|
|
{
|
|
float(*points)[2];
|
|
Py_ssize_t len;
|
|
|
|
PyObject *ret;
|
|
|
|
len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d");
|
|
if (len == -1) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (len) {
|
|
int *index_map;
|
|
Py_ssize_t len_ret, i;
|
|
|
|
index_map = MEM_malloc_arrayN<int>(size_t(len), __func__);
|
|
|
|
/* Non Python function */
|
|
len_ret = BLI_convexhull_2d({reinterpret_cast<blender::float2 *>(points), len}, index_map);
|
|
|
|
ret = PyList_New(len_ret);
|
|
for (i = 0; i < len_ret; i++) {
|
|
PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i]));
|
|
}
|
|
|
|
MEM_freeN(index_map);
|
|
|
|
PyMem_Free(points);
|
|
}
|
|
else {
|
|
ret = PyList_New(0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return a PyObject that is a list of lists, using the flattened list array
|
|
* to fill values, with start_table and len_table giving the start index
|
|
* and length of the toplevel_len sub-lists.
|
|
*/
|
|
static PyObject *list_of_lists_from_arrays(const blender::Span<blender::Vector<int>> data)
|
|
{
|
|
if (data.is_empty()) {
|
|
return PyList_New(0);
|
|
}
|
|
PyObject *ret = PyList_New(data.size());
|
|
for (const int i : data.index_range()) {
|
|
const blender::Span<int> group = data[i];
|
|
PyObject *sublist = PyList_New(group.size());
|
|
for (const int j : group.index_range()) {
|
|
PyList_SET_ITEM(sublist, j, PyLong_FromLong(group[j]));
|
|
}
|
|
PyList_SET_ITEM(ret, i, sublist);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_delaunay_2d_cdt_doc,
|
|
".. function:: delaunay_2d_cdt(vert_coords, edges, faces, output_type, epsilon, "
|
|
"need_ids=True, /)\n"
|
|
"\n"
|
|
" Computes the Constrained Delaunay Triangulation of a set of vertices,\n"
|
|
" with edges and faces that must appear in the triangulation.\n"
|
|
" Some triangles may be eaten away, or combined with other triangles,\n"
|
|
" according to output type.\n"
|
|
" The returned verts may be in a different order from input verts, may be moved\n"
|
|
" slightly, and may be merged with other nearby verts.\n"
|
|
" The three returned orig lists give, for each of verts, edges, and faces, the list of\n"
|
|
" input element indices corresponding to the positionally same output element.\n"
|
|
" For edges, the orig indices start with the input edges and then continue\n"
|
|
" with the edges implied by each of the faces (n of them for an n-gon).\n"
|
|
" If the need_ids argument is supplied, and False, then the code skips the preparation\n"
|
|
" of the orig arrays, which may save some time.\n"
|
|
"\n"
|
|
" :arg vert_coords: Vertex coordinates (2d)\n"
|
|
" :type vert_coords: Sequence[:class:`mathutils.Vector`]\n"
|
|
" :arg edges: Edges, as pairs of indices in ``vert_coords``\n"
|
|
" :type edges: Sequence[Sequence[int, int]]\n"
|
|
" :arg faces: Faces, each sublist is a face, as indices in ``vert_coords`` (CCW oriented).\n"
|
|
" :type faces: Sequence[Sequence[int]]\n"
|
|
" :arg output_type: What output looks like. 0 => triangles with convex hull. "
|
|
"1 => triangles inside constraints. "
|
|
"2 => the input constraints, intersected. "
|
|
"3 => like 2 but detect holes and omit them from output. "
|
|
"4 => like 2 but with extra edges to make valid BMesh faces. "
|
|
"5 => like 4 but detect holes and omit them from output.\n"
|
|
" :type output_type: int\n"
|
|
" :arg epsilon: For nearness tests; should not be zero\n"
|
|
" :type epsilon: float\n"
|
|
" :arg need_ids: are the orig output arrays needed?\n"
|
|
" :type need_ids: bool\n"
|
|
" :return: Output tuple, (vert_coords, edges, faces, orig_verts, orig_edges, orig_faces)\n"
|
|
" :rtype: tuple["
|
|
"list[:class:`mathutils.Vector`], "
|
|
"list[tuple[int, int]], "
|
|
"list[list[int]], "
|
|
"list[list[int]], "
|
|
"list[list[int]], "
|
|
"list[list[int]]]\n");
|
|
static PyObject *M_Geometry_delaunay_2d_cdt(PyObject * /*self*/, PyObject *args)
|
|
{
|
|
using namespace blender;
|
|
const char *error_prefix = "delaunay_2d_cdt";
|
|
PyObject *vert_coords, *edges, *faces;
|
|
int output_type;
|
|
float epsilon;
|
|
bool need_ids = true;
|
|
float(*in_coords)[2] = nullptr;
|
|
int(*in_edges)[2] = nullptr;
|
|
Py_ssize_t vert_coords_len, edges_len;
|
|
PyObject *out_vert_coords = nullptr;
|
|
PyObject *out_edges = nullptr;
|
|
PyObject *out_faces = nullptr;
|
|
PyObject *out_orig_verts = nullptr;
|
|
PyObject *out_orig_edges = nullptr;
|
|
PyObject *out_orig_faces = nullptr;
|
|
PyObject *ret_value = nullptr;
|
|
|
|
if (!PyArg_ParseTuple(args,
|
|
"OOOif|p:delaunay_2d_cdt",
|
|
&vert_coords,
|
|
&edges,
|
|
&faces,
|
|
&output_type,
|
|
&epsilon,
|
|
&need_ids))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
BLI_SCOPED_DEFER([&]() {
|
|
if (in_coords != nullptr) {
|
|
PyMem_Free(in_coords);
|
|
}
|
|
if (in_edges != nullptr) {
|
|
PyMem_Free(in_edges);
|
|
}
|
|
});
|
|
|
|
vert_coords_len = mathutils_array_parse_alloc_v(
|
|
(float **)&in_coords, 2, vert_coords, error_prefix);
|
|
if (vert_coords_len == -1) {
|
|
return nullptr;
|
|
}
|
|
|
|
edges_len = mathutils_array_parse_alloc_vi((int **)&in_edges, 2, edges, error_prefix);
|
|
if (edges_len == -1) {
|
|
return nullptr;
|
|
}
|
|
|
|
Array<Vector<int>> in_faces;
|
|
if (!mathutils_array_parse_alloc_viseq(faces, error_prefix, in_faces)) {
|
|
return nullptr;
|
|
}
|
|
|
|
Array<double2> verts(vert_coords_len);
|
|
for (const int i : verts.index_range()) {
|
|
verts[i] = {double(in_coords[i][0]), double(in_coords[i][1])};
|
|
}
|
|
|
|
meshintersect::CDT_input<double> in;
|
|
in.vert = std::move(verts);
|
|
in.edge = Span(reinterpret_cast<std::pair<int, int> *>(in_edges), edges_len);
|
|
in.face = std::move(in_faces);
|
|
in.epsilon = epsilon;
|
|
in.need_ids = need_ids;
|
|
|
|
const meshintersect::CDT_result<double> res = meshintersect::delaunay_2d_calc(
|
|
in, CDT_output_type(output_type));
|
|
|
|
ret_value = PyTuple_New(6);
|
|
|
|
out_vert_coords = PyList_New(res.vert.size());
|
|
for (const int i : res.vert.index_range()) {
|
|
const float2 vert_float(res.vert[i]);
|
|
PyObject *item = Vector_CreatePyObject(vert_float, 2, nullptr);
|
|
if (item == nullptr) {
|
|
Py_DECREF(ret_value);
|
|
Py_DECREF(out_vert_coords);
|
|
return nullptr;
|
|
}
|
|
PyList_SET_ITEM(out_vert_coords, i, item);
|
|
}
|
|
PyTuple_SET_ITEM(ret_value, 0, out_vert_coords);
|
|
|
|
out_edges = PyList_New(res.edge.size());
|
|
for (const int i : res.edge.index_range()) {
|
|
PyObject *item = PyTuple_New(2);
|
|
PyTuple_SET_ITEM(item, 0, PyLong_FromLong(long(res.edge[i].first)));
|
|
PyTuple_SET_ITEM(item, 1, PyLong_FromLong(long(res.edge[i].second)));
|
|
PyList_SET_ITEM(out_edges, i, item);
|
|
}
|
|
PyTuple_SET_ITEM(ret_value, 1, out_edges);
|
|
|
|
out_faces = list_of_lists_from_arrays(res.face);
|
|
PyTuple_SET_ITEM(ret_value, 2, out_faces);
|
|
|
|
out_orig_verts = list_of_lists_from_arrays(res.vert_orig);
|
|
PyTuple_SET_ITEM(ret_value, 3, out_orig_verts);
|
|
|
|
out_orig_edges = list_of_lists_from_arrays(res.edge_orig);
|
|
PyTuple_SET_ITEM(ret_value, 4, out_orig_edges);
|
|
|
|
out_orig_faces = list_of_lists_from_arrays(res.face_orig);
|
|
PyTuple_SET_ITEM(ret_value, 5, out_orig_faces);
|
|
|
|
return ret_value;
|
|
}
|
|
|
|
#endif /* MATH_STANDALONE */
|
|
|
|
static PyMethodDef M_Geometry_methods[] = {
|
|
{"intersect_ray_tri",
|
|
(PyCFunction)M_Geometry_intersect_ray_tri,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_ray_tri_doc},
|
|
{"intersect_point_line",
|
|
(PyCFunction)M_Geometry_intersect_point_line,
|
|
METH_FASTCALL,
|
|
M_Geometry_intersect_point_line_doc},
|
|
{"intersect_point_tri",
|
|
(PyCFunction)M_Geometry_intersect_point_tri,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_point_tri_doc},
|
|
{"closest_point_on_tri",
|
|
(PyCFunction)M_Geometry_closest_point_on_tri,
|
|
METH_VARARGS,
|
|
M_Geometry_closest_point_on_tri_doc},
|
|
{"intersect_point_tri_2d",
|
|
(PyCFunction)M_Geometry_intersect_point_tri_2d,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_point_tri_2d_doc},
|
|
{"intersect_point_quad_2d",
|
|
(PyCFunction)M_Geometry_intersect_point_quad_2d,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_point_quad_2d_doc},
|
|
{"intersect_line_line",
|
|
(PyCFunction)M_Geometry_intersect_line_line,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_line_line_doc},
|
|
{"intersect_line_line_2d",
|
|
(PyCFunction)M_Geometry_intersect_line_line_2d,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_line_line_2d_doc},
|
|
{"intersect_line_plane",
|
|
(PyCFunction)M_Geometry_intersect_line_plane,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_line_plane_doc},
|
|
{"intersect_plane_plane",
|
|
(PyCFunction)M_Geometry_intersect_plane_plane,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_plane_plane_doc},
|
|
{"intersect_line_sphere",
|
|
(PyCFunction)M_Geometry_intersect_line_sphere,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_line_sphere_doc},
|
|
{"intersect_line_sphere_2d",
|
|
(PyCFunction)M_Geometry_intersect_line_sphere_2d,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_line_sphere_2d_doc},
|
|
{"distance_point_to_plane",
|
|
(PyCFunction)M_Geometry_distance_point_to_plane,
|
|
METH_VARARGS,
|
|
M_Geometry_distance_point_to_plane_doc},
|
|
{"intersect_sphere_sphere_2d",
|
|
(PyCFunction)M_Geometry_intersect_sphere_sphere_2d,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_sphere_sphere_2d_doc},
|
|
{"intersect_tri_tri_2d",
|
|
(PyCFunction)M_Geometry_intersect_tri_tri_2d,
|
|
METH_VARARGS,
|
|
M_Geometry_intersect_tri_tri_2d_doc},
|
|
{"area_tri", (PyCFunction)M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
|
|
{"volume_tetrahedron",
|
|
(PyCFunction)M_Geometry_volume_tetrahedron,
|
|
METH_VARARGS,
|
|
M_Geometry_volume_tetrahedron_doc},
|
|
{"normal", (PyCFunction)M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
|
|
{"barycentric_transform",
|
|
(PyCFunction)M_Geometry_barycentric_transform,
|
|
METH_VARARGS,
|
|
M_Geometry_barycentric_transform_doc},
|
|
{"points_in_planes",
|
|
(PyCFunction)M_Geometry_points_in_planes,
|
|
METH_VARARGS,
|
|
M_Geometry_points_in_planes_doc},
|
|
#ifndef MATH_STANDALONE
|
|
{"interpolate_bezier",
|
|
(PyCFunction)M_Geometry_interpolate_bezier,
|
|
METH_VARARGS,
|
|
M_Geometry_interpolate_bezier_doc},
|
|
{"tessellate_polygon",
|
|
(PyCFunction)M_Geometry_tessellate_polygon,
|
|
METH_O,
|
|
M_Geometry_tessellate_polygon_doc},
|
|
{"convex_hull_2d",
|
|
(PyCFunction)M_Geometry_convex_hull_2d,
|
|
METH_O,
|
|
M_Geometry_convex_hull_2d_doc},
|
|
{"delaunay_2d_cdt",
|
|
(PyCFunction)M_Geometry_delaunay_2d_cdt,
|
|
METH_VARARGS,
|
|
M_Geometry_delaunay_2d_cdt_doc},
|
|
{"box_fit_2d", (PyCFunction)M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc},
|
|
{"box_pack_2d", (PyCFunction)M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
|
|
#endif
|
|
{nullptr, nullptr, 0, nullptr},
|
|
};
|
|
|
|
PyDoc_STRVAR(
|
|
/* Wrap. */
|
|
M_Geometry_doc,
|
|
"The Blender geometry module.");
|
|
static PyModuleDef M_Geometry_module_def = {
|
|
/*m_base*/ PyModuleDef_HEAD_INIT,
|
|
/*m_name*/ "mathutils.geometry",
|
|
/*m_doc*/ M_Geometry_doc,
|
|
/*m_size*/ 0,
|
|
/*m_methods*/ M_Geometry_methods,
|
|
/*m_slots*/ nullptr,
|
|
/*m_traverse*/ nullptr,
|
|
/*m_clear*/ nullptr,
|
|
/*m_free*/ nullptr,
|
|
};
|
|
|
|
/*----------------------------MODULE INIT-------------------------*/
|
|
|
|
PyMODINIT_FUNC PyInit_mathutils_geometry()
|
|
{
|
|
PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
|
|
return submodule;
|
|
}
|