The distinction existed for legacy reasons, to easily port of Embree intersection code without affecting the main vector types. However we are now using SIMD for these types as well, so no good reason to keep the distinction. Also more consistently pass these vector types by value in inline functions. Previously it was partially changed for functions used by Metal to avoid having to add address space qualifiers, simple to do it everywhere. Also removes function declarations for vector math headers, serves no real purpose. Differential Revision: https://developer.blender.org/D16146
215 lines
4.2 KiB
C
215 lines
4.2 KiB
C
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#ifndef __UTIL_MATH_FLOAT2_H__
|
|
#define __UTIL_MATH_FLOAT2_H__
|
|
|
|
#ifndef __UTIL_MATH_H__
|
|
# error "Do not include this file directly, include util/types.h instead."
|
|
#endif
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device_inline float2 zero_float2()
|
|
{
|
|
return make_float2(0.0f, 0.0f);
|
|
}
|
|
|
|
ccl_device_inline float2 one_float2()
|
|
{
|
|
return make_float2(1.0f, 1.0f);
|
|
}
|
|
|
|
#if !defined(__KERNEL_METAL__)
|
|
ccl_device_inline float2 operator-(const float2 &a)
|
|
{
|
|
return make_float2(-a.x, -a.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator*(const float2 a, const float2 b)
|
|
{
|
|
return make_float2(a.x * b.x, a.y * b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator*(const float2 a, float f)
|
|
{
|
|
return make_float2(a.x * f, a.y * f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator*(float f, const float2 a)
|
|
{
|
|
return make_float2(a.x * f, a.y * f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator/(float f, const float2 a)
|
|
{
|
|
return make_float2(f / a.x, f / a.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator/(const float2 a, float f)
|
|
{
|
|
float invf = 1.0f / f;
|
|
return make_float2(a.x * invf, a.y * invf);
|
|
}
|
|
|
|
ccl_device_inline float2 operator/(const float2 a, const float2 b)
|
|
{
|
|
return make_float2(a.x / b.x, a.y / b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator+(const float2 a, const float2 b)
|
|
{
|
|
return make_float2(a.x + b.x, a.y + b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator+(const float2 a, const float f)
|
|
{
|
|
return a + make_float2(f, f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator-(const float2 a, const float2 b)
|
|
{
|
|
return make_float2(a.x - b.x, a.y - b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator-(const float2 a, const float f)
|
|
{
|
|
return a - make_float2(f, f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator+=(float2 &a, const float2 b)
|
|
{
|
|
return a = a + b;
|
|
}
|
|
|
|
ccl_device_inline float2 operator*=(float2 &a, const float2 b)
|
|
{
|
|
return a = a * b;
|
|
}
|
|
|
|
ccl_device_inline float2 operator*=(float2 &a, float f)
|
|
{
|
|
return a = a * f;
|
|
}
|
|
|
|
ccl_device_inline float2 operator/=(float2 &a, const float2 b)
|
|
{
|
|
return a = a / b;
|
|
}
|
|
|
|
ccl_device_inline float2 operator/=(float2 &a, float f)
|
|
{
|
|
float invf = 1.0f / f;
|
|
return a = a * invf;
|
|
}
|
|
|
|
ccl_device_inline bool operator==(const float2 a, const float2 b)
|
|
{
|
|
return (a.x == b.x && a.y == b.y);
|
|
}
|
|
|
|
ccl_device_inline bool operator!=(const float2 a, const float2 b)
|
|
{
|
|
return !(a == b);
|
|
}
|
|
|
|
ccl_device_inline bool is_zero(const float2 a)
|
|
{
|
|
return (a.x == 0.0f && a.y == 0.0f);
|
|
}
|
|
|
|
ccl_device_inline float average(const float2 a)
|
|
{
|
|
return (a.x + a.y) * (1.0f / 2.0f);
|
|
}
|
|
|
|
ccl_device_inline float dot(const float2 a, const float2 b)
|
|
{
|
|
return a.x * b.x + a.y * b.y;
|
|
}
|
|
#endif
|
|
|
|
ccl_device_inline float len(const float2 a)
|
|
{
|
|
return sqrtf(dot(a, a));
|
|
}
|
|
|
|
#if !defined(__KERNEL_METAL__)
|
|
ccl_device_inline float distance(const float2 a, const float2 b)
|
|
{
|
|
return len(a - b);
|
|
}
|
|
|
|
ccl_device_inline float cross(const float2 a, const float2 b)
|
|
{
|
|
return (a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
ccl_device_inline float2 normalize(const float2 a)
|
|
{
|
|
return a / len(a);
|
|
}
|
|
|
|
ccl_device_inline float2 normalize_len(const float2 a, ccl_private float *t)
|
|
{
|
|
*t = len(a);
|
|
return a / (*t);
|
|
}
|
|
|
|
ccl_device_inline float2 safe_normalize(const float2 a)
|
|
{
|
|
float t = len(a);
|
|
return (t != 0.0f) ? a / t : a;
|
|
}
|
|
|
|
ccl_device_inline float2 min(const float2 a, const float2 b)
|
|
{
|
|
return make_float2(min(a.x, b.x), min(a.y, b.y));
|
|
}
|
|
|
|
ccl_device_inline float2 max(const float2 a, const float2 b)
|
|
{
|
|
return make_float2(max(a.x, b.x), max(a.y, b.y));
|
|
}
|
|
|
|
ccl_device_inline float2 clamp(const float2 a, const float2 mn, const float2 mx)
|
|
{
|
|
return min(max(a, mn), mx);
|
|
}
|
|
|
|
ccl_device_inline float2 fabs(const float2 a)
|
|
{
|
|
return make_float2(fabsf(a.x), fabsf(a.y));
|
|
}
|
|
|
|
ccl_device_inline float2 as_float2(const float4 &a)
|
|
{
|
|
return make_float2(a.x, a.y);
|
|
}
|
|
|
|
ccl_device_inline float2 interp(const float2 a, const float2 b, float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float2 mix(const float2 a, const float2 b, float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float2 floor(const float2 a)
|
|
{
|
|
return make_float2(floorf(a.x), floorf(a.y));
|
|
}
|
|
|
|
#endif /* !__KERNEL_METAL__ */
|
|
|
|
ccl_device_inline float2 safe_divide_float2_float(const float2 a, const float b)
|
|
{
|
|
return (b != 0.0f) ? a / b : zero_float2();
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __UTIL_MATH_FLOAT2_H__ */
|