Files
test/source/blender/blenkernel/intern/mesh_mapping.c
Hans Goudey 05952aa94d Mesh: Remove redundant custom data pointers
For copy-on-write, we want to share attribute arrays between meshes
where possible. Mutable pointers like `Mesh.mvert` make that difficult
by making ownership vague. They also make code more complex by adding
redundancy.

The simplest solution is just removing them and retrieving layers from
`CustomData` as needed. Similar changes have already been applied to
curves and point clouds (e9f82d3dc7, 410a6efb74). Removing use of
the pointers generally makes code more obvious and more reusable.

Mesh data is now accessed with a C++ API (`Mesh::edges()` or
`Mesh::edges_for_write()`), and a C API (`BKE_mesh_edges(mesh)`).

The CoW changes this commit makes possible are described in T95845
and T95842, and started in D14139 and D14140. The change also simplifies
the ongoing mesh struct-of-array refactors from T95965.

**RNA/Python Access Performance**
Theoretically, accessing mesh elements with the RNA API may become
slower, since the layer needs to be found on every random access.
However, overhead is already high enough that this doesn't make a
noticible differenc, and performance is actually improved in some
cases. Random access can be up to 10% faster, but other situations
might be a bit slower. Generally using `foreach_get/set` are the best
way to improve performance. See the differential revision for more
discussion about Python performance.

Cycles has been updated to use raw pointers and the internal Blender
mesh types, mostly because there is no sense in having this overhead
when it's already compiled with Blender. In my tests this roughly
halves the Cycles mesh creation time (0.19s to 0.10s for a 1 million
face grid).

Differential Revision: https://developer.blender.org/D15488
2022-09-05 11:56:34 -05:00

1157 lines
37 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*
* Functions for accessing mesh connectivity data.
* eg: polys connected to verts, UV's connected to verts.
*/
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "DNA_vec_types.h"
#include "BLI_bitmap.h"
#include "BLI_buffer.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_customdata.h"
#include "BKE_mesh_mapping.h"
#include "BLI_memarena.h"
#include "BLI_strict_flags.h"
/* -------------------------------------------------------------------- */
/** \name Mesh Connectivity Mapping
* \{ */
/* ngon version wip, based on BM_uv_vert_map_create */
UvVertMap *BKE_mesh_uv_vert_map_create(const MPoly *mpoly,
const bool *hide_poly,
const MLoop *mloop,
const MLoopUV *mloopuv,
uint totpoly,
uint totvert,
const float limit[2],
const bool selected,
const bool use_winding)
{
UvVertMap *vmap;
UvMapVert *buf;
const MPoly *mp;
uint a;
int i, totuv, nverts;
bool *winding = NULL;
BLI_buffer_declare_static(vec2f, tf_uv_buf, BLI_BUFFER_NOP, 32);
totuv = 0;
/* generate UvMapVert array */
mp = mpoly;
for (a = 0; a < totpoly; a++, mp++) {
if (!selected || (!(hide_poly && hide_poly[a]) && (mp->flag & ME_FACE_SEL))) {
totuv += mp->totloop;
}
}
if (totuv == 0) {
return NULL;
}
vmap = (UvVertMap *)MEM_callocN(sizeof(*vmap), "UvVertMap");
buf = vmap->buf = (UvMapVert *)MEM_callocN(sizeof(*vmap->buf) * (size_t)totuv, "UvMapVert");
vmap->vert = (UvMapVert **)MEM_callocN(sizeof(*vmap->vert) * totvert, "UvMapVert*");
if (use_winding) {
winding = MEM_callocN(sizeof(*winding) * totpoly, "winding");
}
if (!vmap->vert || !vmap->buf) {
BKE_mesh_uv_vert_map_free(vmap);
return NULL;
}
mp = mpoly;
for (a = 0; a < totpoly; a++, mp++) {
if (!selected || (!(hide_poly && hide_poly[a]) && (mp->flag & ME_FACE_SEL))) {
float(*tf_uv)[2] = NULL;
if (use_winding) {
tf_uv = (float(*)[2])BLI_buffer_reinit_data(&tf_uv_buf, vec2f, (size_t)mp->totloop);
}
nverts = mp->totloop;
for (i = 0; i < nverts; i++) {
buf->loop_of_poly_index = (unsigned short)i;
buf->poly_index = a;
buf->separate = 0;
buf->next = vmap->vert[mloop[mp->loopstart + i].v];
vmap->vert[mloop[mp->loopstart + i].v] = buf;
if (use_winding) {
copy_v2_v2(tf_uv[i], mloopuv[mpoly[a].loopstart + i].uv);
}
buf++;
}
if (use_winding) {
winding[a] = cross_poly_v2(tf_uv, (uint)nverts) > 0;
}
}
}
/* sort individual uvs for each vert */
for (a = 0; a < totvert; a++) {
UvMapVert *newvlist = NULL, *vlist = vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
const float *uv, *uv2;
float uvdiff[2];
while (vlist) {
v = vlist;
vlist = vlist->next;
v->next = newvlist;
newvlist = v;
uv = mloopuv[mpoly[v->poly_index].loopstart + v->loop_of_poly_index].uv;
lastv = NULL;
iterv = vlist;
while (iterv) {
next = iterv->next;
uv2 = mloopuv[mpoly[iterv->poly_index].loopstart + iterv->loop_of_poly_index].uv;
sub_v2_v2v2(uvdiff, uv2, uv);
if (fabsf(uv[0] - uv2[0]) < limit[0] && fabsf(uv[1] - uv2[1]) < limit[1] &&
(!use_winding || winding[iterv->poly_index] == winding[v->poly_index])) {
if (lastv) {
lastv->next = next;
}
else {
vlist = next;
}
iterv->next = newvlist;
newvlist = iterv;
}
else {
lastv = iterv;
}
iterv = next;
}
newvlist->separate = 1;
}
vmap->vert[a] = newvlist;
}
if (use_winding) {
MEM_freeN(winding);
}
BLI_buffer_free(&tf_uv_buf);
return vmap;
}
UvMapVert *BKE_mesh_uv_vert_map_get_vert(UvVertMap *vmap, uint v)
{
return vmap->vert[v];
}
void BKE_mesh_uv_vert_map_free(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) {
MEM_freeN(vmap->vert);
}
if (vmap->buf) {
MEM_freeN(vmap->buf);
}
MEM_freeN(vmap);
}
}
/**
* Generates a map where the key is the vertex and the value is a list
* of polys or loops that use that vertex as a corner. The lists are allocated
* from one memory pool.
*
* Wrapped by #BKE_mesh_vert_poly_map_create & BKE_mesh_vert_loop_map_create
*/
static void mesh_vert_poly_or_loop_map_create(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const MLoop *mloop,
int totvert,
int totpoly,
int totloop,
const bool do_loops)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, __func__);
int *indices, *index_iter;
int i, j;
indices = index_iter = MEM_mallocN(sizeof(int) * (size_t)totloop, __func__);
/* Count number of polys for each vertex */
for (i = 0; i < totpoly; i++) {
const MPoly *p = &mpoly[i];
for (j = 0; j < p->totloop; j++) {
map[mloop[p->loopstart + j].v].count++;
}
}
/* Assign indices mem */
for (i = 0; i < totvert; i++) {
map[i].indices = index_iter;
index_iter += map[i].count;
/* Reset 'count' for use as index in last loop */
map[i].count = 0;
}
/* Find the users */
for (i = 0; i < totpoly; i++) {
const MPoly *p = &mpoly[i];
for (j = 0; j < p->totloop; j++) {
uint v = mloop[p->loopstart + j].v;
map[v].indices[map[v].count] = do_loops ? p->loopstart + j : i;
map[v].count++;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_vert_poly_map_create(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const MLoop *mloop,
int totvert,
int totpoly,
int totloop)
{
mesh_vert_poly_or_loop_map_create(r_map, r_mem, mpoly, mloop, totvert, totpoly, totloop, false);
}
void BKE_mesh_vert_loop_map_create(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const MLoop *mloop,
int totvert,
int totpoly,
int totloop)
{
mesh_vert_poly_or_loop_map_create(r_map, r_mem, mpoly, mloop, totvert, totpoly, totloop, true);
}
void BKE_mesh_vert_looptri_map_create(MeshElemMap **r_map,
int **r_mem,
const MVert *UNUSED(mvert),
const int totvert,
const MLoopTri *mlooptri,
const int totlooptri,
const MLoop *mloop,
const int UNUSED(totloop))
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, __func__);
int *indices = MEM_mallocN(sizeof(int) * (size_t)totlooptri * 3, __func__);
int *index_step;
const MLoopTri *mlt;
int i;
/* count face users */
for (i = 0, mlt = mlooptri; i < totlooptri; mlt++, i++) {
for (int j = 3; j--;) {
map[mloop[mlt->tri[j]].v].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totvert; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign looptri-edge users */
for (i = 0, mlt = mlooptri; i < totlooptri; mlt++, i++) {
for (int j = 3; j--;) {
MeshElemMap *map_ele = &map[mloop[mlt->tri[j]].v];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_vert_edge_map_create(
MeshElemMap **r_map, int **r_mem, const MEdge *medge, int totvert, int totedge)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, "vert-edge map");
int *indices = MEM_mallocN(sizeof(int[2]) * (size_t)totedge, "vert-edge map mem");
int *i_pt = indices;
int i;
/* Count number of edges for each vertex */
for (i = 0; i < totedge; i++) {
map[medge[i].v1].count++;
map[medge[i].v2].count++;
}
/* Assign indices mem */
for (i = 0; i < totvert; i++) {
map[i].indices = i_pt;
i_pt += map[i].count;
/* Reset 'count' for use as index in last loop */
map[i].count = 0;
}
/* Find the users */
for (i = 0; i < totedge; i++) {
const uint v[2] = {medge[i].v1, medge[i].v2};
map[v[0]].indices[map[v[0]].count] = i;
map[v[1]].indices[map[v[1]].count] = i;
map[v[0]].count++;
map[v[1]].count++;
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_vert_edge_vert_map_create(
MeshElemMap **r_map, int **r_mem, const MEdge *medge, int totvert, int totedge)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, "vert-edge map");
int *indices = MEM_mallocN(sizeof(int[2]) * (size_t)totedge, "vert-edge map mem");
int *i_pt = indices;
int i;
/* Count number of edges for each vertex */
for (i = 0; i < totedge; i++) {
map[medge[i].v1].count++;
map[medge[i].v2].count++;
}
/* Assign indices mem */
for (i = 0; i < totvert; i++) {
map[i].indices = i_pt;
i_pt += map[i].count;
/* Reset 'count' for use as index in last loop */
map[i].count = 0;
}
/* Find the users */
for (i = 0; i < totedge; i++) {
const uint v[2] = {medge[i].v1, medge[i].v2};
map[v[0]].indices[map[v[0]].count] = (int)v[1];
map[v[1]].indices[map[v[1]].count] = (int)v[0];
map[v[0]].count++;
map[v[1]].count++;
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_edge_loop_map_create(MeshElemMap **r_map,
int **r_mem,
const MEdge *UNUSED(medge),
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totedge, "edge-poly map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)totloop * 2, "edge-poly map mem");
int *index_step;
const MPoly *mp;
int i;
/* count face users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
int j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
map[ml->e].count += 2;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totedge; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign loop-edge users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
MeshElemMap *map_ele;
const int max_loop = mp->loopstart + mp->totloop;
int j = mp->loopstart;
for (ml = &mloop[j]; j < max_loop; j++, ml++) {
map_ele = &map[ml->e];
map_ele->indices[map_ele->count++] = j;
map_ele->indices[map_ele->count++] = j + 1;
}
/* last edge/loop of poly, must point back to first loop! */
map_ele->indices[map_ele->count - 1] = mp->loopstart;
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_edge_poly_map_create(MeshElemMap **r_map,
int **r_mem,
const MEdge *UNUSED(medge),
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totedge, "edge-poly map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)totloop, "edge-poly map mem");
int *index_step;
const MPoly *mp;
int i;
/* count face users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
int j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
map[ml->e].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totedge; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign poly-edge users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
int j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
MeshElemMap *map_ele = &map[ml->e];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_origindex_map_create(MeshElemMap **r_map,
int **r_mem,
const int totsource,
const int *final_origindex,
const int totfinal)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totsource, "poly-tessface map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)totfinal, "poly-tessface map mem");
int *index_step;
int i;
/* count face users */
for (i = 0; i < totfinal; i++) {
if (final_origindex[i] != ORIGINDEX_NONE) {
BLI_assert(final_origindex[i] < totsource);
map[final_origindex[i]].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totsource; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign poly-tessface users */
for (i = 0; i < totfinal; i++) {
if (final_origindex[i] != ORIGINDEX_NONE) {
MeshElemMap *map_ele = &map[final_origindex[i]];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_origindex_map_create_looptri(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const int mpoly_num,
const MLoopTri *looptri,
const int looptri_num)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)mpoly_num, "poly-tessface map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)looptri_num, "poly-tessface map mem");
int *index_step;
int i;
/* create offsets */
index_step = indices;
for (i = 0; i < mpoly_num; i++) {
map[i].indices = index_step;
index_step += ME_POLY_TRI_TOT(&mpoly[i]);
}
/* assign poly-tessface users */
for (i = 0; i < looptri_num; i++) {
MeshElemMap *map_ele = &map[looptri[i].poly];
map_ele->indices[map_ele->count++] = i;
}
*r_map = map;
*r_mem = indices;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh loops/poly islands.
* Used currently for UVs and 'smooth groups'.
* \{ */
/**
* Callback deciding whether the given poly/loop/edge define an island boundary or not.
*/
typedef bool (*MeshRemap_CheckIslandBoundary)(const struct MPoly *mpoly,
const struct MLoop *mloop,
const struct MEdge *medge,
const int edge_user_count,
const struct MPoly *mpoly_array,
const struct MeshElemMap *edge_poly_map,
void *user_data);
static void poly_edge_loop_islands_calc(const MEdge *medge,
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop,
MeshElemMap *edge_poly_map,
const bool use_bitflags,
MeshRemap_CheckIslandBoundary edge_boundary_check,
void *edge_boundary_check_data,
int **r_poly_groups,
int *r_totgroup,
BLI_bitmap **r_edge_borders,
int *r_totedgeborder)
{
int *poly_groups;
int *poly_stack;
BLI_bitmap *edge_borders = NULL;
int num_edgeborders = 0;
int poly_prev = 0;
const int temp_poly_group_id = 3; /* Placeholder value. */
/* Group we could not find any available bit, will be reset to 0 at end. */
const int poly_group_id_overflowed = 5;
int tot_group = 0;
bool group_id_overflow = false;
/* map vars */
int *edge_poly_mem = NULL;
if (totpoly == 0) {
*r_totgroup = 0;
*r_poly_groups = NULL;
if (r_edge_borders) {
*r_edge_borders = NULL;
*r_totedgeborder = 0;
}
return;
}
if (r_edge_borders) {
edge_borders = BLI_BITMAP_NEW(totedge, __func__);
*r_totedgeborder = 0;
}
if (!edge_poly_map) {
BKE_mesh_edge_poly_map_create(
&edge_poly_map, &edge_poly_mem, medge, totedge, mpoly, totpoly, mloop, totloop);
}
poly_groups = MEM_callocN(sizeof(int) * (size_t)totpoly, __func__);
poly_stack = MEM_mallocN(sizeof(int) * (size_t)totpoly, __func__);
while (true) {
int poly;
int bit_poly_group_mask = 0;
int poly_group_id;
int ps_curr_idx = 0, ps_end_idx = 0; /* stack indices */
for (poly = poly_prev; poly < totpoly; poly++) {
if (poly_groups[poly] == 0) {
break;
}
}
if (poly == totpoly) {
/* all done */
break;
}
poly_group_id = use_bitflags ? temp_poly_group_id : ++tot_group;
/* start searching from here next time */
poly_prev = poly + 1;
poly_groups[poly] = poly_group_id;
poly_stack[ps_end_idx++] = poly;
while (ps_curr_idx != ps_end_idx) {
const MPoly *mp;
const MLoop *ml;
int j;
poly = poly_stack[ps_curr_idx++];
BLI_assert(poly_groups[poly] == poly_group_id);
mp = &mpoly[poly];
for (ml = &mloop[mp->loopstart], j = mp->totloop; j--; ml++) {
/* loop over poly users */
const int me_idx = (int)ml->e;
const MEdge *me = &medge[me_idx];
const MeshElemMap *map_ele = &edge_poly_map[me_idx];
const int *p = map_ele->indices;
int i = map_ele->count;
if (!edge_boundary_check(mp, ml, me, i, mpoly, map_ele, edge_boundary_check_data)) {
for (; i--; p++) {
/* if we meet other non initialized its a bug */
BLI_assert(ELEM(poly_groups[*p], 0, poly_group_id));
if (poly_groups[*p] == 0) {
poly_groups[*p] = poly_group_id;
poly_stack[ps_end_idx++] = *p;
}
}
}
else {
if (edge_borders && !BLI_BITMAP_TEST(edge_borders, me_idx)) {
BLI_BITMAP_ENABLE(edge_borders, me_idx);
num_edgeborders++;
}
if (use_bitflags) {
/* Find contiguous smooth groups already assigned,
* these are the values we can't reuse! */
for (; i--; p++) {
int bit = poly_groups[*p];
if (!ELEM(bit, 0, poly_group_id, poly_group_id_overflowed) &&
!(bit_poly_group_mask & bit)) {
bit_poly_group_mask |= bit;
}
}
}
}
}
}
/* And now, we have all our poly from current group in poly_stack
* (from 0 to (ps_end_idx - 1)),
* as well as all smoothgroups bits we can't use in bit_poly_group_mask.
*/
if (use_bitflags) {
int i, *p, gid_bit = 0;
poly_group_id = 1;
/* Find first bit available! */
for (; (poly_group_id & bit_poly_group_mask) && (gid_bit < 32); gid_bit++) {
poly_group_id <<= 1; /* will 'overflow' on last possible iteration. */
}
if (UNLIKELY(gid_bit > 31)) {
/* All bits used in contiguous smooth groups, we can't do much!
* NOTE: this is *very* unlikely - theoretically, four groups are enough,
* I don't think we can reach this goal with such a simple algorithm,
* but I don't think either we'll never need all 32 groups!
*/
printf(
"Warning, could not find an available id for current smooth group, faces will me "
"marked "
"as out of any smooth group...\n");
/* Can't use 0, will have to set them to this value later. */
poly_group_id = poly_group_id_overflowed;
group_id_overflow = true;
}
if (gid_bit > tot_group) {
tot_group = gid_bit;
}
/* And assign the final smooth group id to that poly group! */
for (i = ps_end_idx, p = poly_stack; i--; p++) {
poly_groups[*p] = poly_group_id;
}
}
}
if (use_bitflags) {
/* used bits are zero-based. */
tot_group++;
}
if (UNLIKELY(group_id_overflow)) {
int i = totpoly, *gid = poly_groups;
for (; i--; gid++) {
if (*gid == poly_group_id_overflowed) {
*gid = 0;
}
}
/* Using 0 as group id adds one more group! */
tot_group++;
}
if (edge_poly_mem) {
MEM_freeN(edge_poly_map);
MEM_freeN(edge_poly_mem);
}
MEM_freeN(poly_stack);
*r_totgroup = tot_group;
*r_poly_groups = poly_groups;
if (r_edge_borders) {
*r_edge_borders = edge_borders;
*r_totedgeborder = num_edgeborders;
}
}
static bool poly_is_island_boundary_smooth_cb(const MPoly *mp,
const MLoop *UNUSED(ml),
const MEdge *me,
const int edge_user_count,
const MPoly *mpoly_array,
const MeshElemMap *edge_poly_map,
void *UNUSED(user_data))
{
/* Edge is sharp if one of its polys is flat, or edge itself is sharp,
* or edge is not used by exactly two polygons. */
if ((mp->flag & ME_SMOOTH) && !(me->flag & ME_SHARP) && (edge_user_count == 2)) {
/* In that case, edge appears to be smooth, but we need to check its other poly too. */
const MPoly *mp_other = (mp == &mpoly_array[edge_poly_map->indices[0]]) ?
&mpoly_array[edge_poly_map->indices[1]] :
&mpoly_array[edge_poly_map->indices[0]];
return (mp_other->flag & ME_SMOOTH) == 0;
}
return true;
}
int *BKE_mesh_calc_smoothgroups(const MEdge *medge,
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop,
int *r_totgroup,
const bool use_bitflags)
{
int *poly_groups = NULL;
poly_edge_loop_islands_calc(medge,
totedge,
mpoly,
totpoly,
mloop,
totloop,
NULL,
use_bitflags,
poly_is_island_boundary_smooth_cb,
NULL,
&poly_groups,
r_totgroup,
NULL,
NULL);
return poly_groups;
}
#define MISLAND_DEFAULT_BUFSIZE 64
void BKE_mesh_loop_islands_init(MeshIslandStore *island_store,
const short item_type,
const int items_num,
const short island_type,
const short innercut_type)
{
MemArena *mem = island_store->mem;
if (mem == NULL) {
mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
island_store->mem = mem;
}
/* else memarena should be cleared */
BLI_assert(
ELEM(item_type, MISLAND_TYPE_VERT, MISLAND_TYPE_EDGE, MISLAND_TYPE_POLY, MISLAND_TYPE_LOOP));
BLI_assert(ELEM(
island_type, MISLAND_TYPE_VERT, MISLAND_TYPE_EDGE, MISLAND_TYPE_POLY, MISLAND_TYPE_LOOP));
island_store->item_type = item_type;
island_store->items_to_islands_num = items_num;
island_store->items_to_islands = BLI_memarena_alloc(
mem, sizeof(*island_store->items_to_islands) * (size_t)items_num);
island_store->island_type = island_type;
island_store->islands_num_alloc = MISLAND_DEFAULT_BUFSIZE;
island_store->islands = BLI_memarena_alloc(
mem, sizeof(*island_store->islands) * island_store->islands_num_alloc);
island_store->innercut_type = innercut_type;
island_store->innercuts = BLI_memarena_alloc(
mem, sizeof(*island_store->innercuts) * island_store->islands_num_alloc);
}
void BKE_mesh_loop_islands_clear(MeshIslandStore *island_store)
{
island_store->item_type = MISLAND_TYPE_NONE;
island_store->items_to_islands_num = 0;
island_store->items_to_islands = NULL;
island_store->island_type = MISLAND_TYPE_NONE;
island_store->islands_num = 0;
island_store->islands = NULL;
island_store->innercut_type = MISLAND_TYPE_NONE;
island_store->innercuts = NULL;
if (island_store->mem) {
BLI_memarena_clear(island_store->mem);
}
island_store->islands_num_alloc = 0;
}
void BKE_mesh_loop_islands_free(MeshIslandStore *island_store)
{
if (island_store->mem) {
BLI_memarena_free(island_store->mem);
island_store->mem = NULL;
}
}
void BKE_mesh_loop_islands_add(MeshIslandStore *island_store,
const int item_num,
const int *items_indices,
const int num_island_items,
int *island_item_indices,
const int num_innercut_items,
int *innercut_item_indices)
{
MemArena *mem = island_store->mem;
MeshElemMap *isld, *innrcut;
const int curr_island_idx = island_store->islands_num++;
const size_t curr_num_islands = (size_t)island_store->islands_num;
int i = item_num;
while (i--) {
island_store->items_to_islands[items_indices[i]] = curr_island_idx;
}
if (UNLIKELY(curr_num_islands > island_store->islands_num_alloc)) {
MeshElemMap **islds, **innrcuts;
island_store->islands_num_alloc *= 2;
islds = BLI_memarena_alloc(mem, sizeof(*islds) * island_store->islands_num_alloc);
memcpy(islds, island_store->islands, sizeof(*islds) * (curr_num_islands - 1));
island_store->islands = islds;
innrcuts = BLI_memarena_alloc(mem, sizeof(*innrcuts) * island_store->islands_num_alloc);
memcpy(innrcuts, island_store->innercuts, sizeof(*innrcuts) * (curr_num_islands - 1));
island_store->innercuts = innrcuts;
}
island_store->islands[curr_island_idx] = isld = BLI_memarena_alloc(mem, sizeof(*isld));
isld->count = num_island_items;
isld->indices = BLI_memarena_alloc(mem, sizeof(*isld->indices) * (size_t)num_island_items);
memcpy(isld->indices, island_item_indices, sizeof(*isld->indices) * (size_t)num_island_items);
island_store->innercuts[curr_island_idx] = innrcut = BLI_memarena_alloc(mem, sizeof(*innrcut));
innrcut->count = num_innercut_items;
innrcut->indices = BLI_memarena_alloc(mem,
sizeof(*innrcut->indices) * (size_t)num_innercut_items);
memcpy(innrcut->indices,
innercut_item_indices,
sizeof(*innrcut->indices) * (size_t)num_innercut_items);
}
/* TODO: I'm not sure edge seam flag is enough to define UV islands?
* Maybe we should also consider UV-maps values
* themselves (i.e. different UV-edges for a same mesh-edge => boundary edge too?).
* Would make things much more complex though,
* and each UVMap would then need its own mesh mapping, not sure we want that at all!
*/
typedef struct MeshCheckIslandBoundaryUv {
const MLoop *loops;
const MLoopUV *luvs;
const MeshElemMap *edge_loop_map;
} MeshCheckIslandBoundaryUv;
static bool mesh_check_island_boundary_uv(const MPoly *UNUSED(mp),
const MLoop *ml,
const MEdge *me,
const int UNUSED(edge_user_count),
const MPoly *UNUSED(mpoly_array),
const MeshElemMap *UNUSED(edge_poly_map),
void *user_data)
{
if (user_data) {
const MeshCheckIslandBoundaryUv *data = user_data;
const MLoop *loops = data->loops;
const MLoopUV *luvs = data->luvs;
const MeshElemMap *edge_to_loops = &data->edge_loop_map[ml->e];
BLI_assert(edge_to_loops->count >= 2 && (edge_to_loops->count % 2) == 0);
const uint v1 = loops[edge_to_loops->indices[0]].v;
const uint v2 = loops[edge_to_loops->indices[1]].v;
const float *uvco_v1 = luvs[edge_to_loops->indices[0]].uv;
const float *uvco_v2 = luvs[edge_to_loops->indices[1]].uv;
for (int i = 2; i < edge_to_loops->count; i += 2) {
if (loops[edge_to_loops->indices[i]].v == v1) {
if (!equals_v2v2(uvco_v1, luvs[edge_to_loops->indices[i]].uv) ||
!equals_v2v2(uvco_v2, luvs[edge_to_loops->indices[i + 1]].uv)) {
return true;
}
}
else {
BLI_assert(loops[edge_to_loops->indices[i]].v == v2);
UNUSED_VARS_NDEBUG(v2);
if (!equals_v2v2(uvco_v2, luvs[edge_to_loops->indices[i]].uv) ||
!equals_v2v2(uvco_v1, luvs[edge_to_loops->indices[i + 1]].uv)) {
return true;
}
}
}
return false;
}
/* Edge is UV boundary if tagged as seam. */
return (me->flag & ME_SEAM) != 0;
}
static bool mesh_calc_islands_loop_poly_uv(const MVert *UNUSED(verts),
const int UNUSED(totvert),
const MEdge *edges,
const int totedge,
const MPoly *polys,
const int totpoly,
const MLoop *loops,
const int totloop,
const MLoopUV *luvs,
MeshIslandStore *r_island_store)
{
int *poly_groups = NULL;
int num_poly_groups;
/* map vars */
MeshElemMap *edge_poly_map;
int *edge_poly_mem;
MeshElemMap *edge_loop_map;
int *edge_loop_mem;
MeshCheckIslandBoundaryUv edge_boundary_check_data;
int *poly_indices;
int *loop_indices;
int num_pidx, num_lidx;
/* Those are used to detect 'inner cuts', i.e. edges that are borders,
* and yet have two or more polys of a same group using them
* (typical case: seam used to unwrap properly a cylinder). */
BLI_bitmap *edge_borders = NULL;
int num_edge_borders = 0;
char *edge_border_count = NULL;
int *edge_innercut_indices = NULL;
int num_einnercuts = 0;
int grp_idx, p_idx, pl_idx, l_idx;
BKE_mesh_loop_islands_clear(r_island_store);
BKE_mesh_loop_islands_init(
r_island_store, MISLAND_TYPE_LOOP, totloop, MISLAND_TYPE_POLY, MISLAND_TYPE_EDGE);
BKE_mesh_edge_poly_map_create(
&edge_poly_map, &edge_poly_mem, edges, totedge, polys, totpoly, loops, totloop);
if (luvs) {
BKE_mesh_edge_loop_map_create(
&edge_loop_map, &edge_loop_mem, edges, totedge, polys, totpoly, loops, totloop);
edge_boundary_check_data.loops = loops;
edge_boundary_check_data.luvs = luvs;
edge_boundary_check_data.edge_loop_map = edge_loop_map;
}
poly_edge_loop_islands_calc(edges,
totedge,
polys,
totpoly,
loops,
totloop,
edge_poly_map,
false,
mesh_check_island_boundary_uv,
luvs ? &edge_boundary_check_data : NULL,
&poly_groups,
&num_poly_groups,
&edge_borders,
&num_edge_borders);
if (!num_poly_groups) {
/* Should never happen... */
MEM_freeN(edge_poly_map);
MEM_freeN(edge_poly_mem);
if (edge_borders) {
MEM_freeN(edge_borders);
}
return false;
}
if (num_edge_borders) {
edge_border_count = MEM_mallocN(sizeof(*edge_border_count) * (size_t)totedge, __func__);
edge_innercut_indices = MEM_mallocN(sizeof(*edge_innercut_indices) * (size_t)num_edge_borders,
__func__);
}
poly_indices = MEM_mallocN(sizeof(*poly_indices) * (size_t)totpoly, __func__);
loop_indices = MEM_mallocN(sizeof(*loop_indices) * (size_t)totloop, __func__);
/* NOTE: here we ignore '0' invalid group - this should *never* happen in this case anyway? */
for (grp_idx = 1; grp_idx <= num_poly_groups; grp_idx++) {
num_pidx = num_lidx = 0;
if (num_edge_borders) {
num_einnercuts = 0;
memset(edge_border_count, 0, sizeof(*edge_border_count) * (size_t)totedge);
}
for (p_idx = 0; p_idx < totpoly; p_idx++) {
if (poly_groups[p_idx] != grp_idx) {
continue;
}
const MPoly *mp = &polys[p_idx];
poly_indices[num_pidx++] = p_idx;
for (l_idx = mp->loopstart, pl_idx = 0; pl_idx < mp->totloop; l_idx++, pl_idx++) {
const MLoop *ml = &loops[l_idx];
loop_indices[num_lidx++] = l_idx;
if (num_edge_borders && BLI_BITMAP_TEST(edge_borders, ml->e) &&
(edge_border_count[ml->e] < 2)) {
edge_border_count[ml->e]++;
if (edge_border_count[ml->e] == 2) {
edge_innercut_indices[num_einnercuts++] = (int)ml->e;
}
}
}
}
BKE_mesh_loop_islands_add(r_island_store,
num_lidx,
loop_indices,
num_pidx,
poly_indices,
num_einnercuts,
edge_innercut_indices);
}
MEM_freeN(edge_poly_map);
MEM_freeN(edge_poly_mem);
if (luvs) {
MEM_freeN(edge_loop_map);
MEM_freeN(edge_loop_mem);
}
MEM_freeN(poly_indices);
MEM_freeN(loop_indices);
MEM_freeN(poly_groups);
if (edge_borders) {
MEM_freeN(edge_borders);
}
if (num_edge_borders) {
MEM_freeN(edge_border_count);
MEM_freeN(edge_innercut_indices);
}
return true;
}
bool BKE_mesh_calc_islands_loop_poly_edgeseam(const MVert *verts,
const int totvert,
const MEdge *edges,
const int totedge,
const MPoly *polys,
const int totpoly,
const MLoop *loops,
const int totloop,
MeshIslandStore *r_island_store)
{
return mesh_calc_islands_loop_poly_uv(
verts, totvert, edges, totedge, polys, totpoly, loops, totloop, NULL, r_island_store);
}
bool BKE_mesh_calc_islands_loop_poly_uvmap(MVert *verts,
const int totvert,
MEdge *edges,
const int totedge,
MPoly *polys,
const int totpoly,
MLoop *loops,
const int totloop,
const MLoopUV *luvs,
MeshIslandStore *r_island_store)
{
BLI_assert(luvs != NULL);
return mesh_calc_islands_loop_poly_uv(
verts, totvert, edges, totedge, polys, totpoly, loops, totloop, luvs, r_island_store);
}
/** \} */