Files
test/source/blender/blenlib/BLI_linear_allocator.hh
Jacques Lucke a337e7738f BLI: use no_unique_address attribute
Even though the `no_unique_address` attribute has only been standardized
in C++20, compilers seem to support it with C++17 already. This attribute
allows reducing the memory footprint of structs which have empty types as
data members (usually that is an allocator or inline buffer in Blender).
Previously, one had to use the empty base optimization to achieve the same
effect, which requires a lot of boilerplate code.

The types that benefit from this the most are `Vector` and `Array`, which
usually become 8 bytes smaller. All types which use these core data structures
get smaller as well of course.

Differential Revision: https://developer.blender.org/D14993
2022-05-25 16:28:07 +02:00

242 lines
7.7 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*
* A linear allocator is the simplest form of an allocator. It never reuses any memory, and
* therefore does not need a deallocation method. It simply hands out consecutive buffers of
* memory. When the current buffer is full, it reallocates a new larger buffer and continues.
*/
#pragma once
#include "BLI_string_ref.hh"
#include "BLI_utility_mixins.hh"
#include "BLI_vector.hh"
namespace blender {
template<typename Allocator = GuardedAllocator> class LinearAllocator : NonCopyable, NonMovable {
private:
BLI_NO_UNIQUE_ADDRESS Allocator allocator_;
Vector<void *> owned_buffers_;
Vector<Span<char>> unused_borrowed_buffers_;
uintptr_t current_begin_;
uintptr_t current_end_;
#ifdef DEBUG
int64_t debug_allocated_amount_ = 0;
#endif
/* Buffers larger than that are not packed together with smaller allocations to avoid wasting
* memory. */
constexpr static inline int64_t large_buffer_threshold = 4096;
public:
LinearAllocator()
{
current_begin_ = 0;
current_end_ = 0;
}
~LinearAllocator()
{
for (void *ptr : owned_buffers_) {
allocator_.deallocate(ptr);
}
}
/**
* Get a pointer to a memory buffer with the given size an alignment. The memory buffer will be
* freed when this LinearAllocator is destructed.
*
* The alignment has to be a power of 2.
*/
void *allocate(const int64_t size, const int64_t alignment)
{
BLI_assert(size >= 0);
BLI_assert(alignment >= 1);
BLI_assert(is_power_of_2_i(alignment));
const uintptr_t alignment_mask = alignment - 1;
const uintptr_t potential_allocation_begin = (current_begin_ + alignment_mask) &
~alignment_mask;
const uintptr_t potential_allocation_end = potential_allocation_begin + size;
if (potential_allocation_end <= current_end_) {
#ifdef DEBUG
debug_allocated_amount_ += size;
#endif
current_begin_ = potential_allocation_end;
return reinterpret_cast<void *>(potential_allocation_begin);
}
if (size <= large_buffer_threshold) {
this->allocate_new_buffer(size + alignment, alignment);
return this->allocate(size, alignment);
}
return this->allocator_large_buffer(size, alignment);
};
/**
* Allocate a memory buffer that can hold an instance of T.
*
* This method only allocates memory and does not construct the instance.
*/
template<typename T> T *allocate()
{
return static_cast<T *>(this->allocate(sizeof(T), alignof(T)));
}
/**
* Allocate a memory buffer that can hold T array with the given size.
*
* This method only allocates memory and does not construct the instance.
*/
template<typename T> MutableSpan<T> allocate_array(int64_t size)
{
T *array = static_cast<T *>(this->allocate(sizeof(T) * size, alignof(T)));
return MutableSpan<T>(array, size);
}
/**
* Construct an instance of T in memory provided by this allocator.
*
* Arguments passed to this method will be forwarded to the constructor of T.
*
* You must not call `delete` on the returned value.
* Instead, only the destructor has to be called.
*/
template<typename T, typename... Args> destruct_ptr<T> construct(Args &&...args)
{
void *buffer = this->allocate(sizeof(T), alignof(T));
T *value = new (buffer) T(std::forward<Args>(args)...);
return destruct_ptr<T>(value);
}
/**
* Construct multiple instances of a type in an array. The constructor of is called with the
* given arguments. The caller is responsible for calling the destructor (and not `delete`) on
* the constructed elements.
*/
template<typename T, typename... Args>
MutableSpan<T> construct_array(int64_t size, Args &&...args)
{
MutableSpan<T> array = this->allocate_array<T>(size);
for (const int64_t i : IndexRange(size)) {
new (&array[i]) T(std::forward<Args>(args)...);
}
return array;
}
/**
* Copy the given array into a memory buffer provided by this allocator.
*/
template<typename T> MutableSpan<T> construct_array_copy(Span<T> src)
{
if (src.is_empty()) {
return {};
}
MutableSpan<T> dst = this->allocate_array<T>(src.size());
uninitialized_copy_n(src.data(), src.size(), dst.data());
return dst;
}
/**
* Copy the given string into a memory buffer provided by this allocator. The returned string is
* always null terminated.
*/
StringRefNull copy_string(StringRef str)
{
const int64_t alloc_size = str.size() + 1;
char *buffer = static_cast<char *>(this->allocate(alloc_size, 1));
str.copy(buffer, alloc_size);
return StringRefNull(static_cast<const char *>(buffer));
}
MutableSpan<void *> allocate_elements_and_pointer_array(int64_t element_amount,
int64_t element_size,
int64_t element_alignment)
{
void *pointer_buffer = this->allocate(element_amount * sizeof(void *), alignof(void *));
void *elements_buffer = this->allocate(element_amount * element_size, element_alignment);
MutableSpan<void *> pointers((void **)pointer_buffer, element_amount);
void *next_element_buffer = elements_buffer;
for (int64_t i : IndexRange(element_amount)) {
pointers[i] = next_element_buffer;
next_element_buffer = POINTER_OFFSET(next_element_buffer, element_size);
}
return pointers;
}
template<typename T, typename... Args>
Span<T *> construct_elements_and_pointer_array(int64_t n, Args &&...args)
{
MutableSpan<void *> void_pointers = this->allocate_elements_and_pointer_array(
n, sizeof(T), alignof(T));
MutableSpan<T *> pointers = void_pointers.cast<T *>();
for (int64_t i : IndexRange(n)) {
new (static_cast<void *>(pointers[i])) T(std::forward<Args>(args)...);
}
return pointers;
}
/**
* Tell the allocator to use up the given memory buffer, before allocating new memory from the
* system.
*/
void provide_buffer(void *buffer, uint size)
{
unused_borrowed_buffers_.append(Span<char>(static_cast<char *>(buffer), size));
}
template<size_t Size, size_t Alignment>
void provide_buffer(AlignedBuffer<Size, Alignment> &aligned_buffer)
{
this->provide_buffer(aligned_buffer.ptr(), Size);
}
private:
void allocate_new_buffer(int64_t min_allocation_size, int64_t min_alignment)
{
for (int64_t i : unused_borrowed_buffers_.index_range()) {
Span<char> buffer = unused_borrowed_buffers_[i];
if (buffer.size() >= min_allocation_size) {
unused_borrowed_buffers_.remove_and_reorder(i);
current_begin_ = (uintptr_t)buffer.begin();
current_end_ = (uintptr_t)buffer.end();
return;
}
}
/* Possibly allocate more bytes than necessary for the current allocation. This way more small
* allocations can be packed together. Large buffers are allocated exactly to avoid wasting too
* much memory. */
int64_t size_in_bytes = min_allocation_size;
if (size_in_bytes <= large_buffer_threshold) {
/* Gradually grow buffer size with each allocation, up to a maximum. */
const int grow_size = 1 << std::min<int>(owned_buffers_.size() + 6, 20);
size_in_bytes = std::min(large_buffer_threshold,
std::max<int64_t>(size_in_bytes, grow_size));
}
void *buffer = allocator_.allocate(size_in_bytes, min_alignment, __func__);
owned_buffers_.append(buffer);
current_begin_ = (uintptr_t)buffer;
current_end_ = current_begin_ + size_in_bytes;
}
void *allocator_large_buffer(const int64_t size, const int64_t alignment)
{
void *buffer = allocator_.allocate(size, alignment, __func__);
owned_buffers_.append(buffer);
return buffer;
}
};
} // namespace blender