Files
test/intern/cycles/kernel/kernel_subsurface.h
Brecht Van Lommel a7f4270748 Fix Cycles NaN assert in random walk SSS due to very small throughput
Now terminate if there are many bounces and the throughput gets so small
that we get precision issues.
2021-03-19 13:20:42 +01:00

692 lines
25 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* BSSRDF using disk based importance sampling.
*
* BSSRDF Importance Sampling, SIGGRAPH 2013
* http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
*/
ccl_device_inline float3
subsurface_scatter_eval(ShaderData *sd, const ShaderClosure *sc, float disk_r, float r, bool all)
{
/* this is the veach one-sample model with balance heuristic, some pdf
* factors drop out when using balance heuristic weighting */
float3 eval_sum = zero_float3();
float pdf_sum = 0.0f;
float sample_weight_inv = 0.0f;
if (!all) {
float sample_weight_sum = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
sample_weight_sum += sc->sample_weight;
}
}
sample_weight_inv = 1.0f / sample_weight_sum;
}
for (int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
/* in case of branched path integrate we sample all bssrdf's once,
* for path trace we pick one, so adjust pdf for that */
float sample_weight = (all) ? 1.0f : sc->sample_weight * sample_weight_inv;
/* compute pdf */
float3 eval = bssrdf_eval(sc, r);
float pdf = bssrdf_pdf(sc, disk_r);
eval_sum += sc->weight * eval;
pdf_sum += sample_weight * pdf;
}
}
return (pdf_sum > 0.0f) ? eval_sum / pdf_sum : zero_float3();
}
/* replace closures with a single diffuse bsdf closure after scatter step */
ccl_device void subsurface_scatter_setup_diffuse_bsdf(
KernelGlobals *kg, ShaderData *sd, ClosureType type, float roughness, float3 weight, float3 N)
{
sd->flag &= ~SD_CLOSURE_FLAGS;
sd->num_closure = 0;
sd->num_closure_left = kernel_data.integrator.max_closures;
#ifdef __PRINCIPLED__
if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
sd, sizeof(PrincipledDiffuseBsdf), weight);
if (bsdf) {
bsdf->N = N;
bsdf->roughness = roughness;
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
/* replace CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular Disney principled diffuse closure */
bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
}
}
else if (CLOSURE_IS_BSDF_BSSRDF(type) || CLOSURE_IS_BSSRDF(type))
#endif /* __PRINCIPLED__ */
{
DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);
if (bsdf) {
bsdf->N = N;
sd->flag |= bsdf_diffuse_setup(bsdf);
/* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular diffuse closure */
bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
}
}
}
/* optionally do blurring of color and/or bump mapping, at the cost of a shader evaluation */
ccl_device float3 subsurface_color_pow(float3 color, float exponent)
{
color = max(color, zero_float3());
if (exponent == 1.0f) {
/* nothing to do */
}
else if (exponent == 0.5f) {
color.x = sqrtf(color.x);
color.y = sqrtf(color.y);
color.z = sqrtf(color.z);
}
else {
color.x = powf(color.x, exponent);
color.y = powf(color.y, exponent);
color.z = powf(color.z, exponent);
}
return color;
}
ccl_device void subsurface_color_bump_blur(
KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, float3 *eval, float3 *N)
{
/* average color and texture blur at outgoing point */
float texture_blur;
float3 out_color = shader_bssrdf_sum(sd, NULL, &texture_blur);
/* do we have bump mapping? */
bool bump = (sd->flag & SD_HAS_BSSRDF_BUMP) != 0;
if (bump || texture_blur > 0.0f) {
/* average color and normal at incoming point */
shader_eval_surface(kg, sd, state, NULL, state->flag);
float3 in_color = shader_bssrdf_sum(sd, (bump) ? N : NULL, NULL);
/* we simply divide out the average color and multiply with the average
* of the other one. we could try to do this per closure but it's quite
* tricky to match closures between shader evaluations, their number and
* order may change, this is simpler */
if (texture_blur > 0.0f) {
out_color = subsurface_color_pow(out_color, texture_blur);
in_color = subsurface_color_pow(in_color, texture_blur);
*eval *= safe_divide_color(in_color, out_color);
}
}
}
/* Subsurface scattering step, from a point on the surface to other
* nearby points on the same object.
*/
ccl_device_inline int subsurface_scatter_disk(KernelGlobals *kg,
LocalIntersection *ss_isect,
ShaderData *sd,
const ShaderClosure *sc,
uint *lcg_state,
float disk_u,
float disk_v,
bool all)
{
/* pick random axis in local frame and point on disk */
float3 disk_N, disk_T, disk_B;
float pick_pdf_N, pick_pdf_T, pick_pdf_B;
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
if (disk_v < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
disk_v *= 2.0f;
}
else if (disk_v < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
disk_v = (disk_v - 0.5f) * 4.0f;
}
else {
float3 tmp = disk_N;
disk_N = disk_B;
disk_B = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
disk_v = (disk_v - 0.75f) * 4.0f;
}
/* sample point on disk */
float phi = M_2PI_F * disk_v;
float disk_height, disk_r;
bssrdf_sample(sc, disk_u, &disk_r, &disk_height);
float3 disk_P = (disk_r * cosf(phi)) * disk_T + (disk_r * sinf(phi)) * disk_B;
/* create ray */
#ifdef __SPLIT_KERNEL__
Ray ray_object = ss_isect->ray;
Ray *ray = &ray_object;
#else
Ray *ray = &ss_isect->ray;
#endif
ray->P = sd->P + disk_N * disk_height + disk_P;
ray->D = -disk_N;
ray->t = 2.0f * disk_height;
ray->dP = sd->dP;
ray->dD = differential3_zero();
ray->time = sd->time;
/* intersect with the same object. if multiple intersections are found it
* will use at most BSSRDF_MAX_HITS hits, a random subset of all hits */
scene_intersect_local(kg, ray, ss_isect, sd->object, lcg_state, BSSRDF_MAX_HITS);
int num_eval_hits = min(ss_isect->num_hits, BSSRDF_MAX_HITS);
for (int hit = 0; hit < num_eval_hits; hit++) {
/* Quickly retrieve P and Ng without setting up ShaderData. */
float3 hit_P;
if (sd->type & PRIMITIVE_TRIANGLE) {
hit_P = triangle_refine_local(kg, sd, &ss_isect->hits[hit], ray);
}
#ifdef __OBJECT_MOTION__
else if (sd->type & PRIMITIVE_MOTION_TRIANGLE) {
float3 verts[3];
motion_triangle_vertices(kg,
sd->object,
kernel_tex_fetch(__prim_index, ss_isect->hits[hit].prim),
sd->time,
verts);
hit_P = motion_triangle_refine_local(kg, sd, &ss_isect->hits[hit], ray, verts);
}
#endif /* __OBJECT_MOTION__ */
else {
ss_isect->weight[hit] = zero_float3();
continue;
}
float3 hit_Ng = ss_isect->Ng[hit];
if (ss_isect->hits[hit].object != OBJECT_NONE) {
object_normal_transform(kg, sd, &hit_Ng);
}
/* Probability densities for local frame axes. */
float pdf_N = pick_pdf_N * fabsf(dot(disk_N, hit_Ng));
float pdf_T = pick_pdf_T * fabsf(dot(disk_T, hit_Ng));
float pdf_B = pick_pdf_B * fabsf(dot(disk_B, hit_Ng));
/* Multiple importance sample between 3 axes, power heuristic
* found to be slightly better than balance heuristic. pdf_N
* in the MIS weight and denominator cancelled out. */
float w = pdf_N / (sqr(pdf_N) + sqr(pdf_T) + sqr(pdf_B));
if (ss_isect->num_hits > BSSRDF_MAX_HITS) {
w *= ss_isect->num_hits / (float)BSSRDF_MAX_HITS;
}
/* Real distance to sampled point. */
float r = len(hit_P - sd->P);
/* Evaluate profiles. */
float3 eval = subsurface_scatter_eval(sd, sc, disk_r, r, all) * w;
ss_isect->weight[hit] = eval;
}
#ifdef __SPLIT_KERNEL__
ss_isect->ray = *ray;
#endif
return num_eval_hits;
}
#if defined(__KERNEL_OPTIX__) && defined(__SHADER_RAYTRACE__)
ccl_device_inline void subsurface_scatter_multi_setup(KernelGlobals *kg,
LocalIntersection *ss_isect,
int hit,
ShaderData *sd,
ccl_addr_space PathState *state,
ClosureType type,
float roughness)
{
optixDirectCall<void>(2, kg, ss_isect, hit, sd, state, type, roughness);
}
extern "C" __device__ void __direct_callable__subsurface_scatter_multi_setup(
#else
ccl_device_noinline void subsurface_scatter_multi_setup(
#endif
KernelGlobals *kg,
LocalIntersection *ss_isect,
int hit,
ShaderData *sd,
ccl_addr_space PathState *state,
ClosureType type,
float roughness)
{
#ifdef __SPLIT_KERNEL__
Ray ray_object = ss_isect->ray;
Ray *ray = &ray_object;
#else
Ray *ray = &ss_isect->ray;
#endif
/* Workaround for AMD GPU OpenCL compiler. Most probably cache bypass issue. */
#if defined(__SPLIT_KERNEL__) && defined(__KERNEL_OPENCL_AMD__) && defined(__KERNEL_GPU__)
kernel_split_params.dummy_sd_flag = sd->flag;
#endif
/* Setup new shading point. */
shader_setup_from_subsurface(kg, sd, &ss_isect->hits[hit], ray);
/* Optionally blur colors and bump mapping. */
float3 weight = ss_isect->weight[hit];
float3 N = sd->N;
subsurface_color_bump_blur(kg, sd, state, &weight, &N);
/* Setup diffuse BSDF. */
subsurface_scatter_setup_diffuse_bsdf(kg, sd, type, roughness, weight, N);
}
/* Random walk subsurface scattering.
*
* "Practical and Controllable Subsurface Scattering for Production Path
* Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
ccl_device void subsurface_random_walk_remap(const float A,
const float d,
float *sigma_t,
float *alpha)
{
/* Compute attenuation and scattering coefficients from albedo. */
*alpha = 1.0f - expf(A * (-5.09406f + A * (2.61188f - A * 4.31805f)));
const float s = 1.9f - A + 3.5f * sqr(A - 0.8f);
*sigma_t = 1.0f / fmaxf(d * s, 1e-16f);
}
ccl_device void subsurface_random_walk_coefficients(const ShaderClosure *sc,
float3 *sigma_t,
float3 *alpha,
float3 *weight)
{
const Bssrdf *bssrdf = (const Bssrdf *)sc;
const float3 A = bssrdf->albedo;
const float3 d = bssrdf->radius;
float sigma_t_x, sigma_t_y, sigma_t_z;
float alpha_x, alpha_y, alpha_z;
subsurface_random_walk_remap(A.x, d.x, &sigma_t_x, &alpha_x);
subsurface_random_walk_remap(A.y, d.y, &sigma_t_y, &alpha_y);
subsurface_random_walk_remap(A.z, d.z, &sigma_t_z, &alpha_z);
*sigma_t = make_float3(sigma_t_x, sigma_t_y, sigma_t_z);
*alpha = make_float3(alpha_x, alpha_y, alpha_z);
/* Closure mixing and Fresnel weights separate from albedo. */
*weight = safe_divide_color(bssrdf->weight, A);
}
/* References for Dwivedi sampling:
*
* [1] "A Zero-variance-based Sampling Scheme for Monte Carlo Subsurface Scattering"
* by Jaroslav Křivánek and Eugene d'Eon (SIGGRAPH 2014)
* https://cgg.mff.cuni.cz/~jaroslav/papers/2014-zerovar/
*
* [2] "Improving the Dwivedi Sampling Scheme"
* by Johannes Meng, Johannes Hanika, and Carsten Dachsbacher (EGSR 2016)
* https://cg.ivd.kit.edu/1951.php
*
* [3] "Zero-Variance Theory for Efficient Subsurface Scattering"
* by Eugene d'Eon and Jaroslav Křivánek (SIGGRAPH 2020)
* https://iliyan.com/publications/RenderingCourse2020
*/
ccl_device_forceinline float eval_phase_dwivedi(float v, float phase_log, float cos_theta)
{
/* Eq. 9 from [2] using precomputed log((v + 1) / (v - 1))*/
return 1.0f / ((v - cos_theta) * phase_log);
}
ccl_device_forceinline float sample_phase_dwivedi(float v, float phase_log, float rand)
{
/* Based on Eq. 10 from [2]: `v - (v + 1) * pow((v - 1) / (v + 1), rand)`
* Since we're already pre-computing `phase_log = log((v + 1) / (v - 1))` for the evaluation,
* we can implement the power function like this. */
return v - (v + 1) * expf(-rand * phase_log);
}
ccl_device_forceinline float diffusion_length_dwivedi(float alpha)
{
/* Eq. 67 from [3] */
return 1.0f / sqrtf(1.0f - powf(alpha, 2.44294f - 0.0215813f * alpha + 0.578637f / alpha));
}
ccl_device_forceinline float3 direction_from_cosine(float3 D, float cos_theta, float randv)
{
float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta);
float phi = M_2PI_F * randv;
float3 dir = make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cos_theta);
float3 T, B;
make_orthonormals(D, &T, &B);
return dir.x * T + dir.y * B + dir.z * D;
}
ccl_device_forceinline float3 subsurface_random_walk_pdf(float3 sigma_t,
float t,
bool hit,
float3 *transmittance)
{
float3 T = volume_color_transmittance(sigma_t, t);
if (transmittance) {
*transmittance = T;
}
return hit ? T : sigma_t * T;
}
#ifdef __KERNEL_OPTIX__
ccl_device_inline /* inline trace calls */
#else
ccl_device_noinline
#endif
bool
subsurface_random_walk(KernelGlobals *kg,
LocalIntersection *ss_isect,
ShaderData *sd,
ccl_addr_space PathState *state,
const ShaderClosure *sc,
const float bssrdf_u,
const float bssrdf_v)
{
/* Sample diffuse surface scatter into the object. */
float3 D;
float pdf;
sample_cos_hemisphere(-sd->N, bssrdf_u, bssrdf_v, &D, &pdf);
if (dot(-sd->Ng, D) <= 0.0f) {
return 0;
}
/* Convert subsurface to volume coefficients.
* The single-scattering albedo is named alpha to avoid confusion with the surface albedo. */
float3 sigma_t, alpha;
float3 throughput = one_float3();
subsurface_random_walk_coefficients(sc, &sigma_t, &alpha, &throughput);
float3 sigma_s = sigma_t * alpha;
/* Theoretically it should be better to use the exact alpha for the channel we're sampling at
* each bounce, but in practice there doesn't seem to be a noticeable difference in exchange
* for making the code significantly more complex and slower (if direction sampling depends on
* the sampled channel, we need to compute its PDF per-channel and consider it for MIS later on).
*
* Since the strength of the guided sampling increases as alpha gets lower, using a value that
* is too low results in fireflies while one that's too high just gives a bit more noise.
* Therefore, the code here uses the highest of the three albedos to be safe. */
float diffusion_length = diffusion_length_dwivedi(max3(alpha));
/* Precompute term for phase sampling. */
float phase_log = logf((diffusion_length + 1) / (diffusion_length - 1));
/* Setup ray. */
#ifdef __SPLIT_KERNEL__
Ray ray_object = ss_isect->ray;
Ray *ray = &ray_object;
#else
Ray *ray = &ss_isect->ray;
#endif
ray->P = ray_offset(sd->P, -sd->Ng);
ray->D = D;
ray->t = FLT_MAX;
ray->time = sd->time;
/* Modify state for RNGs, decorrelated from other paths. */
uint prev_rng_offset = state->rng_offset;
uint prev_rng_hash = state->rng_hash;
state->rng_hash = cmj_hash(state->rng_hash + state->rng_offset, 0xdeadbeef);
/* Random walk until we hit the surface again. */
bool hit = false;
bool have_opposite_interface = false;
float opposite_distance = 0.0f;
/* Todo: Disable for alpha>0.999 or so? */
const float guided_fraction = 0.75f;
for (int bounce = 0; bounce < BSSRDF_MAX_BOUNCES; bounce++) {
/* Advance random number offset. */
state->rng_offset += PRNG_BOUNCE_NUM;
/* Sample color channel, use MIS with balance heuristic. */
float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
float3 channel_pdf;
int channel = kernel_volume_sample_channel(alpha, throughput, rphase, &channel_pdf);
float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
float randt = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
/* We need the result of the raycast to compute the full guided PDF, so just remember the
* relevant terms to avoid recomputing them later. */
float backward_fraction = 0.0f;
float forward_pdf_factor = 0.0f;
float forward_stretching = 1.0f;
float backward_pdf_factor = 0.0f;
float backward_stretching = 1.0f;
/* For the initial ray, we already know the direction, so just do classic distance sampling. */
if (bounce > 0) {
/* Decide whether we should use guided or classic sampling. */
bool guided = (path_state_rng_1D(kg, state, PRNG_LIGHT_TERMINATE) < guided_fraction);
/* Determine if we want to sample away from the incoming interface.
* This only happens if we found a nearby opposite interface, and the probability for it
* depends on how close we are to it already.
* This probability term comes from the recorded presentation of [3]. */
bool guide_backward = false;
if (have_opposite_interface) {
/* Compute distance of the random walk between the tangent plane at the starting point
* and the assumed opposite interface (the parallel plane that contains the point we
* found in our ray query for the opposite side). */
float x = clamp(dot(ray->P - sd->P, -sd->N), 0.0f, opposite_distance);
backward_fraction = 1.0f / (1.0f + expf((opposite_distance - 2 * x) / diffusion_length));
guide_backward = path_state_rng_1D(kg, state, PRNG_TERMINATE) < backward_fraction;
}
/* Sample scattering direction. */
float scatter_u, scatter_v;
path_state_rng_2D(kg, state, PRNG_BSDF_U, &scatter_u, &scatter_v);
float cos_theta;
if (guided) {
cos_theta = sample_phase_dwivedi(diffusion_length, phase_log, scatter_u);
/* The backwards guiding distribution is just mirrored along sd->N, so swapping the
* sign here is enough to sample from that instead. */
if (guide_backward) {
cos_theta = -cos_theta;
}
}
else {
cos_theta = 2.0f * scatter_u - 1.0f;
}
ray->D = direction_from_cosine(sd->N, cos_theta, scatter_v);
/* Compute PDF factor caused by phase sampling (as the ratio of guided / classic).
* Since phase sampling is channel-independent, we can get away with applying a factor
* to the guided PDF, which implicitly means pulling out the classic PDF term and letting
* it cancel with an equivalent term in the numerator of the full estimator.
* For the backward PDF, we again reuse the same probability distribution with a sign swap.
*/
forward_pdf_factor = 2.0f * eval_phase_dwivedi(diffusion_length, phase_log, cos_theta);
backward_pdf_factor = 2.0f * eval_phase_dwivedi(diffusion_length, phase_log, -cos_theta);
/* Prepare distance sampling.
* For the backwards case, this also needs the sign swapped since now directions against
* sd->N (and therefore with negative cos_theta) are preferred. */
forward_stretching = (1.0f - cos_theta / diffusion_length);
backward_stretching = (1.0f + cos_theta / diffusion_length);
if (guided) {
sample_sigma_t *= guide_backward ? backward_stretching : forward_stretching;
}
}
/* Sample direction along ray. */
float t = -logf(1.0f - randt) / sample_sigma_t;
/* On the first bounce, we use the raycast to check if the opposite side is nearby.
* If yes, we will later use backwards guided sampling in order to have a decent
* chance of connecting to it.
* Todo: Maybe use less than 10 times the mean free path? */
ray->t = (bounce == 0) ? max(t, 10.0f / (min3(sigma_t))) : t;
scene_intersect_local(kg, ray, ss_isect, sd->object, NULL, 1);
hit = (ss_isect->num_hits > 0);
if (hit) {
#ifdef __KERNEL_OPTIX__
/* t is always in world space with OptiX. */
ray->t = ss_isect->hits[0].t;
#else
/* Compute world space distance to surface hit. */
float3 D = ray->D;
object_inverse_dir_transform(kg, sd, &D);
D = normalize(D) * ss_isect->hits[0].t;
object_dir_transform(kg, sd, &D);
ray->t = len(D);
#endif
}
if (bounce == 0) {
/* Check if we hit the opposite side. */
if (hit) {
have_opposite_interface = true;
opposite_distance = dot(ray->P + ray->t * ray->D - sd->P, -sd->N);
}
/* Apart from the opposite side check, we were supposed to only trace up to distance t,
* so check if there would have been a hit in that case. */
hit = ray->t < t;
}
/* Use the distance to the exit point for the throughput update if we found one. */
if (hit) {
t = ray->t;
}
/* Advance to new scatter location. */
ray->P += t * ray->D;
float3 transmittance;
float3 pdf = subsurface_random_walk_pdf(sigma_t, t, hit, &transmittance);
if (bounce > 0) {
/* Compute PDF just like we do for classic sampling, but with the stretched sigma_t. */
float3 guided_pdf = subsurface_random_walk_pdf(forward_stretching * sigma_t, t, hit, NULL);
if (have_opposite_interface) {
/* First step of MIS: Depending on geometry we might have two methods for guided
* sampling, so perform MIS between them. */
float3 back_pdf = subsurface_random_walk_pdf(backward_stretching * sigma_t, t, hit, NULL);
guided_pdf = mix(
guided_pdf * forward_pdf_factor, back_pdf * backward_pdf_factor, backward_fraction);
}
else {
/* Just include phase sampling factor otherwise. */
guided_pdf *= forward_pdf_factor;
}
/* Now we apply the MIS balance heuristic between the classic and guided sampling. */
pdf = mix(pdf, guided_pdf, guided_fraction);
}
/* Finally, we're applying MIS again to combine the three color channels.
* Altogether, the MIS computation combines up to nine different estimators:
* {classic, guided, backward_guided} x {r, g, b} */
throughput *= (hit ? transmittance : sigma_s * transmittance) / dot(channel_pdf, pdf);
if (hit) {
/* If we hit the surface, we are done. */
break;
}
else if (throughput.x < VOLUME_THROUGHPUT_EPSILON &&
throughput.y < VOLUME_THROUGHPUT_EPSILON &&
throughput.z < VOLUME_THROUGHPUT_EPSILON) {
/* Avoid unnecessary work and precision issue when throughput gets really small. */
break;
}
}
kernel_assert(isfinite_safe(throughput.x) && isfinite_safe(throughput.y) &&
isfinite_safe(throughput.z));
state->rng_offset = prev_rng_offset;
state->rng_hash = prev_rng_hash;
/* Return number of hits in ss_isect. */
if (!hit) {
return 0;
}
/* TODO: gain back performance lost from merging with disk BSSRDF. We
* only need to return on hit so this indirect ray push/pop overhead
* is not actually needed, but it does keep the code simpler. */
ss_isect->weight[0] = throughput;
#ifdef __SPLIT_KERNEL__
ss_isect->ray = *ray;
#endif
return 1;
}
ccl_device_inline int subsurface_scatter_multi_intersect(KernelGlobals *kg,
LocalIntersection *ss_isect,
ShaderData *sd,
ccl_addr_space PathState *state,
const ShaderClosure *sc,
uint *lcg_state,
float bssrdf_u,
float bssrdf_v,
bool all)
{
if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
return subsurface_scatter_disk(kg, ss_isect, sd, sc, lcg_state, bssrdf_u, bssrdf_v, all);
}
else {
return subsurface_random_walk(kg, ss_isect, sd, state, sc, bssrdf_u, bssrdf_v);
}
}
CCL_NAMESPACE_END