Files
test/intern/cycles/kernel/light/background.h
Weizhen Huang 6fbc958e89 Fix: Cycles Light Tree gives low weight to distant lights in large volume
The original paper only considers the minimal distance of the cluster to
the ray, not the interval length, resulting in low weight for distant
lights that have large influence over a long distance.
This commit modifies the measure by considering `theta_b - theta_a` for
local lights and the ray length `t` for distant lights.

Pull Request: https://projects.blender.org/blender/blender/pulls/123537
2024-06-24 12:48:08 +02:00

466 lines
14 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include "kernel/light/area.h"
#include "kernel/light/common.h"
CCL_NAMESPACE_BEGIN
/* Background Light */
ccl_device float3 background_map_sample(KernelGlobals kg, float2 rand, ccl_private float *pdf)
{
/* for the following, the CDF values are actually a pair of floats, with the
* function value as X and the actual CDF as Y. The last entry's function
* value is the CDF total. */
int res_x = kernel_data.background.map_res_x;
int res_y = kernel_data.background.map_res_y;
int cdf_width = res_x + 1;
/* This is basically std::lower_bound as used by PBRT. */
int first = 0;
int count = res_y;
while (count > 0) {
int step = count >> 1;
int middle = first + step;
if (kernel_data_fetch(light_background_marginal_cdf, middle).y < rand.y) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_v = max(0, first - 1);
kernel_assert(index_v >= 0 && index_v < res_y);
float2 cdf_v = kernel_data_fetch(light_background_marginal_cdf, index_v);
float2 cdf_next_v = kernel_data_fetch(light_background_marginal_cdf, index_v + 1);
float2 cdf_last_v = kernel_data_fetch(light_background_marginal_cdf, res_y);
/* importance-sampled V direction */
float dv = inverse_lerp(cdf_v.y, cdf_next_v.y, rand.y);
float v = (index_v + dv) / res_y;
/* This is basically std::lower_bound as used by PBRT. */
first = 0;
count = res_x;
while (count > 0) {
int step = count >> 1;
int middle = first + step;
if (kernel_data_fetch(light_background_conditional_cdf, index_v * cdf_width + middle).y <
rand.x)
{
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_u = max(0, first - 1);
kernel_assert(index_u >= 0 && index_u < res_x);
float2 cdf_u = kernel_data_fetch(light_background_conditional_cdf,
index_v * cdf_width + index_u);
float2 cdf_next_u = kernel_data_fetch(light_background_conditional_cdf,
index_v * cdf_width + index_u + 1);
float2 cdf_last_u = kernel_data_fetch(light_background_conditional_cdf,
index_v * cdf_width + res_x);
/* importance-sampled U direction */
float du = inverse_lerp(cdf_u.y, cdf_next_u.y, rand.x);
float u = (index_u + du) / res_x;
/* compute pdf */
float sin_theta = sinf(M_PI_F * v);
float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
if (sin_theta == 0.0f || denom == 0.0f)
*pdf = 0.0f;
else
*pdf = (cdf_u.x * cdf_v.x) / denom;
/* compute direction */
return equirectangular_to_direction(u, v);
}
/* TODO(sergey): Same as above, after the release we should consider using
* 'noinline' for all devices.
*/
ccl_device float background_map_pdf(KernelGlobals kg, float3 direction)
{
float2 uv = direction_to_equirectangular(direction);
int res_x = kernel_data.background.map_res_x;
int res_y = kernel_data.background.map_res_y;
int cdf_width = res_x + 1;
float sin_theta = sinf(uv.y * M_PI_F);
if (sin_theta == 0.0f)
return 0.0f;
int index_u = clamp(float_to_int(uv.x * res_x), 0, res_x - 1);
int index_v = clamp(float_to_int(uv.y * res_y), 0, res_y - 1);
/* pdfs in V direction */
float2 cdf_last_u = kernel_data_fetch(light_background_conditional_cdf,
index_v * cdf_width + res_x);
float2 cdf_last_v = kernel_data_fetch(light_background_marginal_cdf, res_y);
float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
if (denom == 0.0f)
return 0.0f;
/* pdfs in U direction */
float2 cdf_u = kernel_data_fetch(light_background_conditional_cdf,
index_v * cdf_width + index_u);
float2 cdf_v = kernel_data_fetch(light_background_marginal_cdf, index_v);
return (cdf_u.x * cdf_v.x) / denom;
}
ccl_device_inline bool background_portal_data_fetch_and_check_side(
KernelGlobals kg, float3 P, int index, ccl_private float3 *lightpos, ccl_private float3 *dir)
{
int portal = kernel_data.integrator.portal_offset + index;
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, portal);
*lightpos = klight->co;
*dir = klight->area.dir;
/* Check whether portal is on the right side. */
if (dot(*dir, P - *lightpos) > 1e-4f)
return true;
return false;
}
ccl_device_inline float background_portal_pdf(
KernelGlobals kg, float3 P, float3 direction, int ignore_portal, ccl_private bool *is_possible)
{
float portal_pdf = 0.0f;
int num_possible = 0;
for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
if (p == ignore_portal)
continue;
float3 lightpos, dir;
if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
continue;
/* There's a portal that could be sampled from this position. */
if (is_possible) {
*is_possible = true;
}
num_possible++;
int portal = kernel_data.integrator.portal_offset + p;
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, portal);
const float3 axis_u = klight->area.axis_u;
const float len_u = klight->area.len_u;
const float3 axis_v = klight->area.axis_v;
const float len_v = klight->area.len_v;
const float3 inv_extent_u = axis_u / len_u;
const float3 inv_extent_v = axis_v / len_v;
bool is_round = (klight->area.invarea < 0.0f);
if (!ray_quad_intersect(P,
direction,
1e-4f,
FLT_MAX,
lightpos,
inv_extent_u,
inv_extent_v,
dir,
NULL,
NULL,
NULL,
NULL,
is_round))
continue;
if (is_round) {
float t;
float3 D = normalize_len(lightpos - P, &t);
portal_pdf += fabsf(klight->area.invarea) * light_pdf_area_to_solid_angle(dir, -D, t);
}
else {
portal_pdf += area_light_rect_sample(
P, &lightpos, axis_u, len_u, axis_v, len_v, zero_float2(), false);
}
}
if (ignore_portal >= 0) {
/* We have skipped a portal that could be sampled as well. */
num_possible++;
}
return (num_possible > 0) ? portal_pdf / num_possible : 0.0f;
}
ccl_device int background_num_possible_portals(KernelGlobals kg, float3 P)
{
int num_possible_portals = 0;
for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
float3 lightpos, dir;
if (background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
num_possible_portals++;
}
return num_possible_portals;
}
ccl_device float3 background_portal_sample(KernelGlobals kg,
float3 P,
float2 rand,
int num_possible,
ccl_private int *sampled_portal,
ccl_private float *pdf)
{
/* Pick a portal, then re-normalize rand.y. */
rand.y *= num_possible;
int portal = (int)rand.y;
rand.y -= portal;
/* TODO(sergey): Some smarter way of finding portal to sample
* is welcome.
*/
for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
/* Search for the sampled portal. */
float3 lightpos, dir;
if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
continue;
if (portal == 0) {
/* p is the portal to be sampled. */
int portal = kernel_data.integrator.portal_offset + p;
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, portal);
const float3 axis_u = klight->area.axis_u;
const float3 axis_v = klight->area.axis_v;
const float len_u = klight->area.len_u;
const float len_v = klight->area.len_v;
bool is_round = (klight->area.invarea < 0.0f);
float3 D;
if (is_round) {
lightpos += ellipse_sample(axis_u * len_u * 0.5f, axis_v * len_v * 0.5f, rand);
float t;
D = normalize_len(lightpos - P, &t);
*pdf = fabsf(klight->area.invarea) * light_pdf_area_to_solid_angle(dir, -D, t);
}
else {
*pdf = area_light_rect_sample(P, &lightpos, axis_u, len_u, axis_v, len_v, rand, true);
D = normalize(lightpos - P);
}
*pdf /= num_possible;
*sampled_portal = p;
return D;
}
portal--;
}
return zero_float3();
}
ccl_device_inline float3 background_sun_sample(KernelGlobals kg,
float2 rand,
ccl_private float *pdf)
{
const float3 N = float4_to_float3(kernel_data.background.sun);
const float angle = kernel_data.background.sun.w;
float unused;
return sample_uniform_cone(N, one_minus_cos(angle), rand, &unused, pdf);
}
ccl_device_inline float background_sun_pdf(KernelGlobals kg, float3 D)
{
const float3 N = float4_to_float3(kernel_data.background.sun);
const float angle = kernel_data.background.sun.w;
return pdf_uniform_cone(N, D, angle);
}
ccl_device_inline float3 background_light_sample(KernelGlobals kg,
float3 P,
float2 rand,
ccl_private float *pdf)
{
float portal_method_pdf = kernel_data.background.portal_weight;
float sun_method_pdf = kernel_data.background.sun_weight;
float map_method_pdf = kernel_data.background.map_weight;
int num_portals = 0;
if (portal_method_pdf > 0.0f) {
/* Check if there are portals in the scene which we can sample. */
num_portals = background_num_possible_portals(kg, P);
if (num_portals == 0) {
portal_method_pdf = 0.0f;
}
}
float pdf_fac = (portal_method_pdf + sun_method_pdf + map_method_pdf);
if (pdf_fac == 0.0f) {
/* Use uniform as a fallback if we can't use any strategy. */
*pdf = 1.0f / M_4PI_F;
return sample_uniform_sphere(rand);
}
pdf_fac = 1.0f / pdf_fac;
portal_method_pdf *= pdf_fac;
sun_method_pdf *= pdf_fac;
map_method_pdf *= pdf_fac;
/* We have 100% in total and split it between the three categories.
* Therefore, we pick portals if rand.x is between 0 and portal_method_pdf,
* sun if rand.x is between portal_method_pdf and (portal_method_pdf + sun_method_pdf)
* and map if rand.x is between (portal_method_pdf + sun_method_pdf) and 1. */
float sun_method_cdf = portal_method_pdf + sun_method_pdf;
int method = 0;
float3 D;
if (rand.x < portal_method_pdf) {
method = 0;
/* Rescale rand.x. */
if (portal_method_pdf != 1.0f) {
rand.x /= portal_method_pdf;
}
/* Sample a portal. */
int portal;
D = background_portal_sample(kg, P, rand, num_portals, &portal, pdf);
if (num_portals > 1) {
/* Ignore the chosen portal, its pdf is already included. */
*pdf += background_portal_pdf(kg, P, D, portal, NULL);
}
/* Skip MIS if this is the only method. */
if (portal_method_pdf == 1.0f) {
return D;
}
*pdf *= portal_method_pdf;
}
else if (rand.x < sun_method_cdf) {
method = 1;
/* Rescale rand.x. */
if (sun_method_pdf != 1.0f) {
rand.x = (rand.x - portal_method_pdf) / sun_method_pdf;
}
D = background_sun_sample(kg, rand, pdf);
/* Skip MIS if this is the only method. */
if (sun_method_pdf == 1.0f) {
return D;
}
*pdf *= sun_method_pdf;
}
else {
method = 2;
/* Rescale rand.x. */
if (map_method_pdf != 1.0f) {
rand.x = (rand.x - sun_method_cdf) / map_method_pdf;
}
D = background_map_sample(kg, rand, pdf);
/* Skip MIS if this is the only method. */
if (map_method_pdf == 1.0f) {
return D;
}
*pdf *= map_method_pdf;
}
/* MIS weighting. */
if (method != 0 && portal_method_pdf != 0.0f) {
*pdf += portal_method_pdf * background_portal_pdf(kg, P, D, -1, NULL);
}
if (method != 1 && sun_method_pdf != 0.0f) {
*pdf += sun_method_pdf * background_sun_pdf(kg, D);
}
if (method != 2 && map_method_pdf != 0.0f) {
*pdf += map_method_pdf * background_map_pdf(kg, D);
}
return D;
}
ccl_device float background_light_pdf(KernelGlobals kg, float3 P, float3 direction)
{
float portal_method_pdf = kernel_data.background.portal_weight;
float sun_method_pdf = kernel_data.background.sun_weight;
float map_method_pdf = kernel_data.background.map_weight;
float portal_pdf = 0.0f;
/* Portals are a special case here since we need to compute their pdf in order
* to find out if we can sample them. */
if (portal_method_pdf > 0.0f) {
/* Evaluate PDF of sampling this direction by portal sampling. */
bool is_possible = false;
portal_pdf = background_portal_pdf(kg, P, direction, -1, &is_possible);
if (!is_possible) {
/* Portal sampling is not possible here because all portals point to the wrong side.
* If other methods can be used instead, do so, otherwise uniform sampling is used as a
* fallback. */
portal_method_pdf = 0.0f;
}
}
float pdf_fac = (portal_method_pdf + sun_method_pdf + map_method_pdf);
if (pdf_fac == 0.0f) {
/* Use uniform as a fallback if we can't use any strategy. */
return 1.0f / M_4PI_F;
}
pdf_fac = 1.0f / pdf_fac;
portal_method_pdf *= pdf_fac;
sun_method_pdf *= pdf_fac;
map_method_pdf *= pdf_fac;
float pdf = portal_pdf * portal_method_pdf;
if (sun_method_pdf != 0.0f) {
pdf += background_sun_pdf(kg, direction) * sun_method_pdf;
}
if (map_method_pdf != 0.0f) {
pdf += background_map_pdf(kg, direction) * map_method_pdf;
}
return pdf;
}
template<bool in_volume_segment>
ccl_device_forceinline bool background_light_tree_parameters(const float3 centroid,
const float t,
ccl_private float &cos_theta_u,
ccl_private float2 &distance,
ccl_private float3 &point_to_centroid,
ccl_private float &theta_d)
{
if (in_volume_segment) {
if (t == FLT_MAX) {
/* In world volume, distant light has no contribution. */
return false;
}
theta_d = t;
}
/* Cover the whole sphere */
cos_theta_u = -1.0f;
distance = make_float2(1.0f, 1.0f);
point_to_centroid = -centroid;
return true;
}
CCL_NAMESPACE_END