Files
test/intern/cycles/render/object.cpp
Brecht Van Lommel 764432ac93 Cycles: BVH build time optimizations:
* BVH building was multithreaded. Not all building is multithreaded, packing
  and the initial bounding/splitting is still single threaded, but recursive
  splitting is, which was the main bottleneck.

* Object splitting now uses binning rather than sorting of all elements, using
  code from the Embree raytracer from Intel.
  http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/

* Other small changes to avoid allocations, pack memory more tightly, avoid
  some unnecessary operations, ...

These optimizations do not work yet when Spatial Splits are enabled, for that
more work is needed. There's also other optimizations still needed, in
particular for the case of many low poly objects, the packing step and node
memory allocation.

BVH raytracing time should remain about the same, but BVH build time should be
significantly reduced, test here show speedup of about 5x to 10x on a dual core
and 5x to 25x on an 8-core machine, depending on the scene.
2012-04-24 11:52:58 +00:00

262 lines
6.5 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "device.h"
#include "light.h"
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "util_foreach.h"
#include "util_map.h"
#include "util_progress.h"
CCL_NAMESPACE_BEGIN
/* Object */
Object::Object()
{
name = "";
mesh = NULL;
tfm = transform_identity();
visibility = ~0;
pass_id = 0;
bounds = BoundBox::empty;
}
Object::~Object()
{
}
void Object::compute_bounds()
{
bounds = mesh->bounds.transformed(&tfm);
}
void Object::apply_transform()
{
if(!mesh || tfm == transform_identity())
return;
for(size_t i = 0; i < mesh->verts.size(); i++)
mesh->verts[i] = transform_point(&tfm, mesh->verts[i]);
Attribute *attr_fN = mesh->attributes.find(Attribute::STD_FACE_NORMAL);
Attribute *attr_vN = mesh->attributes.find(Attribute::STD_VERTEX_NORMAL);
Transform ntfm = transform_transpose(transform_inverse(tfm));
/* we keep normals pointing in same direction on negative scale, notify
mesh about this in it (re)calculates normals */
if(transform_negative_scale(tfm))
mesh->transform_negative_scaled = true;
if(attr_fN) {
float3 *fN = attr_fN->data_float3();
for(size_t i = 0; i < mesh->triangles.size(); i++)
fN[i] = transform_direction(&ntfm, fN[i]);
}
if(attr_vN) {
float3 *vN = attr_vN->data_float3();
for(size_t i = 0; i < mesh->verts.size(); i++)
vN[i] = transform_direction(&ntfm, vN[i]);
}
if(bounds.valid()) {
mesh->compute_bounds();
compute_bounds();
}
tfm = transform_identity();
}
void Object::tag_update(Scene *scene)
{
if(mesh) {
if(mesh->transform_applied)
mesh->need_update = true;
foreach(uint sindex, mesh->used_shaders) {
Shader *shader = scene->shaders[sindex];
if(shader->sample_as_light && shader->has_surface_emission)
scene->light_manager->need_update = true;
}
}
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
/* Object Manager */
ObjectManager::ObjectManager()
{
need_update = true;
}
ObjectManager::~ObjectManager()
{
}
void ObjectManager::device_update_transforms(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
float4 *objects = dscene->objects.resize(OBJECT_SIZE*scene->objects.size());
int i = 0;
map<Mesh*, float> surface_area_map;
foreach(Object *ob, scene->objects) {
Mesh *mesh = ob->mesh;
/* compute transformations */
Transform tfm = ob->tfm;
Transform itfm = transform_inverse(tfm);
Transform ntfm = transform_transpose(itfm);
/* compute surface area. for uniform scale we can do avoid the many
transform calls and share computation for instances */
/* todo: correct for displacement, and move to a better place */
float uniform_scale;
float surface_area = 0.0f;
float pass_id = ob->pass_id;
if(transform_uniform_scale(tfm, uniform_scale)) {
map<Mesh*, float>::iterator it = surface_area_map.find(mesh);
if(it == surface_area_map.end()) {
foreach(Mesh::Triangle& t, mesh->triangles) {
float3 p1 = mesh->verts[t.v[0]];
float3 p2 = mesh->verts[t.v[1]];
float3 p3 = mesh->verts[t.v[2]];
surface_area += triangle_area(p1, p2, p3);
}
surface_area_map[mesh] = surface_area;
}
else
surface_area = it->second;
surface_area *= uniform_scale;
}
else {
foreach(Mesh::Triangle& t, mesh->triangles) {
float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]);
float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]);
float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]);
surface_area += triangle_area(p1, p2, p3);
}
}
/* pack in texture */
int offset = i*OBJECT_SIZE;
memcpy(&objects[offset], &tfm, sizeof(float4)*4);
memcpy(&objects[offset+4], &itfm, sizeof(float4)*4);
memcpy(&objects[offset+8], &ntfm, sizeof(float4)*4);
objects[offset+12] = make_float4(surface_area, pass_id, 0.0f, 0.0f);
i++;
if(progress.get_cancel()) return;
}
device->tex_alloc("__objects", dscene->objects);
}
void ObjectManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
device_free(device, dscene);
if(scene->objects.size() == 0)
return;
/* set object transform matrices, before applying static transforms */
progress.set_status("Updating Objects", "Copying Transformations to device");
device_update_transforms(device, dscene, scene, progress);
if(progress.get_cancel()) return;
/* prepare for static BVH building */
/* todo: do before to support getting object level coords? */
if(scene->params.bvh_type == SceneParams::BVH_STATIC) {
progress.set_status("Updating Objects", "Applying Static Transformations");
apply_static_transforms(scene, progress);
}
if(progress.get_cancel()) return;
need_update = false;
}
void ObjectManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->objects);
dscene->objects.clear();
}
void ObjectManager::apply_static_transforms(Scene *scene, Progress& progress)
{
/* todo: normals and displacement should be done before applying transform! */
/* todo: create objects/meshes in right order! */
/* counter mesh users */
map<Mesh*, int> mesh_users;
foreach(Object *object, scene->objects) {
map<Mesh*, int>::iterator it = mesh_users.find(object->mesh);
if(it == mesh_users.end())
mesh_users[object->mesh] = 1;
else
it->second++;
}
if(progress.get_cancel()) return;
/* apply transforms for objects with single user meshes */
foreach(Object *object, scene->objects) {
if(mesh_users[object->mesh] == 1) {
if(!object->mesh->transform_applied) {
object->apply_transform();
object->mesh->transform_applied = true;
}
if(progress.get_cancel()) return;
}
}
}
void ObjectManager::tag_update(Scene *scene)
{
need_update = true;
scene->mesh_manager->need_update = true;
scene->light_manager->need_update = true;
}
CCL_NAMESPACE_END