Files
test/intern/cycles/kernel/device/optix/kernel.cu
Patrick Mours 2189dfd6e2 Cycles: Rework OptiX visibility flags handling
Before the visibility test against the visibility flags was performed in an any-hit program in OptiX
(called `__anyhit__kernel_optix_visibility_test`), which was using the `__prim_visibility` array.
This is not entirely correct however, since `__prim_visibility` is filled with the merged visibility
flags of all objects that reference that primitive, so if one object uses different visibility flags
than another object, but they both are instances of the same geometry, they would appear the same
way. The reason that the any-hit program was used rather than the OptiX instance visibility mask is
that the latter is currently limited to 8 bits only, which is not sufficient to contain all Cycles
visibility flags (12 bits).

To mostly fix the problem with multiple instances and different visibility flags, I changed things to
use the OptiX instance visibility mask for a subset of the Cycles visibility flags (`PATH_RAY_CAMERA`
to `PATH_RAY_VOLUME_SCATTER`, which fit into 8 bits) and only fall back to the visibility test any-hit
program if that isn't enough (e.g. the ray visibility mask exceeds 8 bits or when using the built-in
curves from OptiX, since the any-hit program is then also used to skip the curve endcaps).

This may also improve performance in some cases, since by default OptiX can now perform the normal
scene intersection trace calls entirely on RT cores without having to jump back to the SM on every
hit to execute the any-hit program.

Fixes T89801

Differential Revision: https://developer.blender.org/D12604
2021-09-27 17:12:43 +02:00

379 lines
12 KiB
Plaintext

/*
* Copyright 2019, NVIDIA Corporation.
* Copyright 2019, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// clang-format off
#include "kernel/device/optix/compat.h"
#include "kernel/device/optix/globals.h"
#include "kernel/device/gpu/image.h" /* Texture lookup uses normal CUDA intrinsics. */
#include "kernel/integrator/integrator_state.h"
#include "kernel/integrator/integrator_state_flow.h"
#include "kernel/integrator/integrator_state_util.h"
#include "kernel/integrator/integrator_intersect_closest.h"
#include "kernel/integrator/integrator_intersect_shadow.h"
#include "kernel/integrator/integrator_intersect_subsurface.h"
#include "kernel/integrator/integrator_intersect_volume_stack.h"
// clang-format on
template<typename T> ccl_device_forceinline T *get_payload_ptr_0()
{
return (T *)(((uint64_t)optixGetPayload_1() << 32) | optixGetPayload_0());
}
template<typename T> ccl_device_forceinline T *get_payload_ptr_2()
{
return (T *)(((uint64_t)optixGetPayload_3() << 32) | optixGetPayload_2());
}
template<bool always = false> ccl_device_forceinline uint get_object_id()
{
#ifdef __OBJECT_MOTION__
/* Always get the the instance ID from the TLAS.
* There might be a motion transform node between TLAS and BLAS which does not have one. */
uint object = optixGetInstanceIdFromHandle(optixGetTransformListHandle(0));
#else
uint object = optixGetInstanceId();
#endif
/* Choose between always returning object ID or only for instances. */
if (always || (object & 1) == 0)
/* Can just remove the low bit since instance always contains object ID. */
return object >> 1;
else
/* Set to OBJECT_NONE if this is not an instanced object. */
return OBJECT_NONE;
}
extern "C" __global__ void __raygen__kernel_optix_integrator_intersect_closest()
{
const int global_index = optixGetLaunchIndex().x;
const int path_index = (__params.path_index_array) ? __params.path_index_array[global_index] :
global_index;
integrator_intersect_closest(nullptr, path_index);
}
extern "C" __global__ void __raygen__kernel_optix_integrator_intersect_shadow()
{
const int global_index = optixGetLaunchIndex().x;
const int path_index = (__params.path_index_array) ? __params.path_index_array[global_index] :
global_index;
integrator_intersect_shadow(nullptr, path_index);
}
extern "C" __global__ void __raygen__kernel_optix_integrator_intersect_subsurface()
{
const int global_index = optixGetLaunchIndex().x;
const int path_index = (__params.path_index_array) ? __params.path_index_array[global_index] :
global_index;
integrator_intersect_subsurface(nullptr, path_index);
}
extern "C" __global__ void __raygen__kernel_optix_integrator_intersect_volume_stack()
{
const int global_index = optixGetLaunchIndex().x;
const int path_index = (__params.path_index_array) ? __params.path_index_array[global_index] :
global_index;
integrator_intersect_volume_stack(nullptr, path_index);
}
extern "C" __global__ void __miss__kernel_optix_miss()
{
/* 'kernel_path_lamp_emission' checks intersection distance, so need to set it even on a miss. */
optixSetPayload_0(__float_as_uint(optixGetRayTmax()));
optixSetPayload_5(PRIMITIVE_NONE);
}
extern "C" __global__ void __anyhit__kernel_optix_local_hit()
{
#ifdef __HAIR__
if (!optixIsTriangleHit()) {
/* Ignore curves. */
return optixIgnoreIntersection();
}
#endif
#ifdef __BVH_LOCAL__
const uint object = get_object_id<true>();
if (object != optixGetPayload_4() /* local_object */) {
/* Only intersect with matching object. */
return optixIgnoreIntersection();
}
const uint max_hits = optixGetPayload_5();
if (max_hits == 0) {
/* Special case for when no hit information is requested, just report that something was hit */
optixSetPayload_5(true);
return optixTerminateRay();
}
int hit = 0;
uint *const lcg_state = get_payload_ptr_0<uint>();
LocalIntersection *const local_isect = get_payload_ptr_2<LocalIntersection>();
if (lcg_state) {
for (int i = min(max_hits, local_isect->num_hits) - 1; i >= 0; --i) {
if (optixGetRayTmax() == local_isect->hits[i].t) {
return optixIgnoreIntersection();
}
}
hit = local_isect->num_hits++;
if (local_isect->num_hits > max_hits) {
hit = lcg_step_uint(lcg_state) % local_isect->num_hits;
if (hit >= max_hits) {
return optixIgnoreIntersection();
}
}
}
else {
if (local_isect->num_hits && optixGetRayTmax() > local_isect->hits[0].t) {
/* Record closest intersection only.
* Do not terminate ray here, since there is no guarantee about distance ordering in any-hit.
*/
return optixIgnoreIntersection();
}
local_isect->num_hits = 1;
}
Intersection *isect = &local_isect->hits[hit];
isect->t = optixGetRayTmax();
isect->prim = optixGetPrimitiveIndex();
isect->object = get_object_id();
isect->type = kernel_tex_fetch(__prim_type, isect->prim);
const float2 barycentrics = optixGetTriangleBarycentrics();
isect->u = 1.0f - barycentrics.y - barycentrics.x;
isect->v = barycentrics.x;
/* Record geometric normal. */
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, isect->prim);
const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 0));
const float3 tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 1));
const float3 tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 2));
local_isect->Ng[hit] = normalize(cross(tri_b - tri_a, tri_c - tri_a));
/* Continue tracing (without this the trace call would return after the first hit). */
optixIgnoreIntersection();
#endif
}
extern "C" __global__ void __anyhit__kernel_optix_shadow_all_hit()
{
#ifdef __SHADOW_RECORD_ALL__
bool ignore_intersection = false;
const uint prim = optixGetPrimitiveIndex();
# ifdef __VISIBILITY_FLAG__
const uint visibility = optixGetPayload_4();
if ((kernel_tex_fetch(__prim_visibility, prim) & visibility) == 0) {
ignore_intersection = true;
}
# endif
float u = 0.0f, v = 0.0f;
if (optixIsTriangleHit()) {
const float2 barycentrics = optixGetTriangleBarycentrics();
u = 1.0f - barycentrics.y - barycentrics.x;
v = barycentrics.x;
}
# ifdef __HAIR__
else {
u = __uint_as_float(optixGetAttribute_0());
v = __uint_as_float(optixGetAttribute_1());
/* Filter out curve endcaps. */
if (u == 0.0f || u == 1.0f) {
ignore_intersection = true;
}
}
# endif
int num_hits = optixGetPayload_2();
int record_index = num_hits;
const int max_hits = optixGetPayload_3();
if (!ignore_intersection) {
optixSetPayload_2(num_hits + 1);
}
Intersection *const isect_array = get_payload_ptr_0<Intersection>();
# ifdef __TRANSPARENT_SHADOWS__
if (num_hits >= max_hits) {
/* If maximum number of hits reached, find a hit to replace. */
const int num_recorded_hits = min(max_hits, num_hits);
float max_recorded_t = isect_array[0].t;
int max_recorded_hit = 0;
for (int i = 1; i < num_recorded_hits; i++) {
if (isect_array[i].t > max_recorded_t) {
max_recorded_t = isect_array[i].t;
max_recorded_hit = i;
}
}
if (optixGetRayTmax() >= max_recorded_t) {
/* Accept hit, so that OptiX won't consider any more hits beyond the distance of the current
* hit anymore. */
return;
}
record_index = max_recorded_hit;
}
# endif
if (!ignore_intersection) {
Intersection *const isect = isect_array + record_index;
isect->u = u;
isect->v = v;
isect->t = optixGetRayTmax();
isect->prim = prim;
isect->object = get_object_id();
isect->type = kernel_tex_fetch(__prim_type, prim);
# ifdef __TRANSPARENT_SHADOWS__
/* Detect if this surface has a shader with transparent shadows. */
if (!shader_transparent_shadow(NULL, isect) || max_hits == 0) {
# endif
/* If no transparent shadows, all light is blocked and we can stop immediately. */
optixSetPayload_5(true);
return optixTerminateRay();
# ifdef __TRANSPARENT_SHADOWS__
}
# endif
}
/* Continue tracing. */
optixIgnoreIntersection();
#endif
}
extern "C" __global__ void __anyhit__kernel_optix_volume_test()
{
#ifdef __HAIR__
if (!optixIsTriangleHit()) {
/* Ignore curves. */
return optixIgnoreIntersection();
}
#endif
#ifdef __VISIBILITY_FLAG__
const uint prim = optixGetPrimitiveIndex();
const uint visibility = optixGetPayload_4();
if ((kernel_tex_fetch(__prim_visibility, prim) & visibility) == 0) {
return optixIgnoreIntersection();
}
#endif
const uint object = get_object_id<true>();
if ((kernel_tex_fetch(__object_flag, object) & SD_OBJECT_HAS_VOLUME) == 0) {
return optixIgnoreIntersection();
}
}
extern "C" __global__ void __anyhit__kernel_optix_visibility_test()
{
#ifdef __HAIR__
if (!optixIsTriangleHit()) {
/* Filter out curve endcaps. */
const float u = __uint_as_float(optixGetAttribute_0());
if (u == 0.0f || u == 1.0f) {
return optixIgnoreIntersection();
}
}
#endif
#ifdef __VISIBILITY_FLAG__
const uint prim = optixGetPrimitiveIndex();
const uint visibility = optixGetPayload_4();
if ((kernel_tex_fetch(__prim_visibility, prim) & visibility) == 0) {
return optixIgnoreIntersection();
}
/* Shadow ray early termination. */
if (visibility & PATH_RAY_SHADOW_OPAQUE) {
return optixTerminateRay();
}
#endif
}
extern "C" __global__ void __closesthit__kernel_optix_hit()
{
optixSetPayload_0(__float_as_uint(optixGetRayTmax())); /* Intersection distance */
optixSetPayload_3(optixGetPrimitiveIndex());
optixSetPayload_4(get_object_id());
/* Can be PRIMITIVE_TRIANGLE and PRIMITIVE_MOTION_TRIANGLE or curve type and segment index. */
optixSetPayload_5(kernel_tex_fetch(__prim_type, optixGetPrimitiveIndex()));
if (optixIsTriangleHit()) {
const float2 barycentrics = optixGetTriangleBarycentrics();
optixSetPayload_1(__float_as_uint(1.0f - barycentrics.y - barycentrics.x));
optixSetPayload_2(__float_as_uint(barycentrics.x));
}
else {
optixSetPayload_1(optixGetAttribute_0()); /* Same as 'optixGetCurveParameter()' */
optixSetPayload_2(optixGetAttribute_1());
}
}
#ifdef __HAIR__
ccl_device_inline void optix_intersection_curve(const uint prim, const uint type)
{
const uint object = get_object_id<true>();
const uint visibility = optixGetPayload_4();
float3 P = optixGetObjectRayOrigin();
float3 dir = optixGetObjectRayDirection();
/* The direction is not normalized by default, but the curve intersection routine expects that */
float len;
dir = normalize_len(dir, &len);
# ifdef __OBJECT_MOTION__
const float time = optixGetRayTime();
# else
const float time = 0.0f;
# endif
Intersection isect;
isect.t = optixGetRayTmax();
/* Transform maximum distance into object space. */
if (isect.t != FLT_MAX)
isect.t *= len;
if (curve_intersect(NULL, &isect, P, dir, isect.t, visibility, object, prim, time, type)) {
optixReportIntersection(isect.t / len,
type & PRIMITIVE_ALL,
__float_as_int(isect.u), /* Attribute_0 */
__float_as_int(isect.v)); /* Attribute_1 */
}
}
extern "C" __global__ void __intersection__curve_ribbon()
{
const uint prim = optixGetPrimitiveIndex();
const uint type = kernel_tex_fetch(__prim_type, prim);
if (type & (PRIMITIVE_CURVE_RIBBON | PRIMITIVE_MOTION_CURVE_RIBBON)) {
optix_intersection_curve(prim, type);
}
}
#endif