Files
test/intern/eigen/intern/linear_solver.cc
Campbell Barton 5b9740c913 Cleanup: use braces for sources in intern/
Omitted intern/itasc as some of these sources are from KDL:
https://www.orocos.org/kdl.html
2023-09-17 09:05:40 +10:00

361 lines
8.3 KiB
C++

/* SPDX-FileCopyrightText: 2004 Bruno Levy
* SPDX-FileCopyrightText: 2005-2015 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup intern_eigen
* Sparse linear solver.
*/
#include "linear_solver.h"
#include <Eigen/Sparse>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <vector>
/* Eigen data structures */
typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix;
typedef Eigen::SparseLU<EigenSparseMatrix> EigenSparseLU;
typedef Eigen::VectorXd EigenVectorX;
typedef Eigen::Triplet<double> EigenTriplet;
/* Linear Solver data structure */
struct LinearSolver {
struct Coeff {
Coeff()
{
index = 0;
value = 0.0;
}
int index;
double value;
};
struct Variable {
Variable()
{
memset(value, 0, sizeof(value));
locked = false;
index = 0;
}
double value[4];
bool locked;
int index;
std::vector<Coeff> a;
};
enum State { STATE_VARIABLES_CONSTRUCT, STATE_MATRIX_CONSTRUCT, STATE_MATRIX_SOLVED };
LinearSolver(int num_rows_, int num_variables_, int num_rhs_, bool lsq_)
{
assert(num_variables_ > 0);
assert(num_rhs_ <= 4);
state = STATE_VARIABLES_CONSTRUCT;
m = 0;
n = 0;
sparseLU = NULL;
num_variables = num_variables_;
num_rhs = num_rhs_;
num_rows = num_rows_;
least_squares = lsq_;
variable.resize(num_variables);
}
~LinearSolver()
{
delete sparseLU;
}
State state;
int n;
int m;
std::vector<EigenTriplet> Mtriplets;
EigenSparseMatrix M;
EigenSparseMatrix MtM;
std::vector<EigenVectorX> b;
std::vector<EigenVectorX> x;
EigenSparseLU *sparseLU;
int num_variables;
std::vector<Variable> variable;
int num_rows;
int num_rhs;
bool least_squares;
};
LinearSolver *EIG_linear_solver_new(int num_rows, int num_columns, int num_rhs)
{
return new LinearSolver(num_rows, num_columns, num_rhs, false);
}
LinearSolver *EIG_linear_least_squares_solver_new(int num_rows, int num_columns, int num_rhs)
{
return new LinearSolver(num_rows, num_columns, num_rhs, true);
}
void EIG_linear_solver_delete(LinearSolver *solver)
{
delete solver;
}
/* Variables */
void EIG_linear_solver_variable_set(LinearSolver *solver, int rhs, int index, double value)
{
solver->variable[index].value[rhs] = value;
}
double EIG_linear_solver_variable_get(LinearSolver *solver, int rhs, int index)
{
return solver->variable[index].value[rhs];
}
void EIG_linear_solver_variable_lock(LinearSolver *solver, int index)
{
if (!solver->variable[index].locked) {
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
solver->variable[index].locked = true;
}
}
void EIG_linear_solver_variable_unlock(LinearSolver *solver, int index)
{
if (solver->variable[index].locked) {
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
solver->variable[index].locked = false;
}
}
static void linear_solver_variables_to_vector(LinearSolver *solver)
{
int num_rhs = solver->num_rhs;
for (int i = 0; i < solver->num_variables; i++) {
LinearSolver::Variable *v = &solver->variable[i];
if (!v->locked) {
for (int j = 0; j < num_rhs; j++) {
solver->x[j][v->index] = v->value[j];
}
}
}
}
static void linear_solver_vector_to_variables(LinearSolver *solver)
{
int num_rhs = solver->num_rhs;
for (int i = 0; i < solver->num_variables; i++) {
LinearSolver::Variable *v = &solver->variable[i];
if (!v->locked) {
for (int j = 0; j < num_rhs; j++) {
v->value[j] = solver->x[j][v->index];
}
}
}
}
/* Matrix */
static void linear_solver_ensure_matrix_construct(LinearSolver *solver)
{
/* transition to matrix construction if necessary */
if (solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT) {
int n = 0;
for (int i = 0; i < solver->num_variables; i++) {
if (solver->variable[i].locked) {
solver->variable[i].index = ~0;
}
else {
solver->variable[i].index = n++;
}
}
int m = (solver->num_rows == 0) ? n : solver->num_rows;
solver->m = m;
solver->n = n;
assert(solver->least_squares || m == n);
/* reserve reasonable estimate */
solver->Mtriplets.clear();
solver->Mtriplets.reserve(std::max(m, n) * 3);
solver->b.resize(solver->num_rhs);
solver->x.resize(solver->num_rhs);
for (int i = 0; i < solver->num_rhs; i++) {
solver->b[i].setZero(m);
solver->x[i].setZero(n);
}
linear_solver_variables_to_vector(solver);
solver->state = LinearSolver::STATE_MATRIX_CONSTRUCT;
}
}
void EIG_linear_solver_matrix_add(LinearSolver *solver, int row, int col, double value)
{
if (solver->state == LinearSolver::STATE_MATRIX_SOLVED) {
return;
}
linear_solver_ensure_matrix_construct(solver);
if (!solver->least_squares && solver->variable[row].locked) {
;
}
else if (solver->variable[col].locked) {
if (!solver->least_squares) {
row = solver->variable[row].index;
}
LinearSolver::Coeff coeff;
coeff.index = row;
coeff.value = value;
solver->variable[col].a.push_back(coeff);
}
else {
if (!solver->least_squares) {
row = solver->variable[row].index;
}
col = solver->variable[col].index;
/* direct insert into matrix is too slow, so use triplets */
EigenTriplet triplet(row, col, value);
solver->Mtriplets.push_back(triplet);
}
}
/* Right hand side */
void EIG_linear_solver_right_hand_side_add(LinearSolver *solver, int rhs, int index, double value)
{
linear_solver_ensure_matrix_construct(solver);
if (solver->least_squares) {
solver->b[rhs][index] += value;
}
else if (!solver->variable[index].locked) {
index = solver->variable[index].index;
solver->b[rhs][index] += value;
}
}
/* Solve */
bool EIG_linear_solver_solve(LinearSolver *solver)
{
/* nothing to solve, perhaps all variables were locked */
if (solver->m == 0 || solver->n == 0) {
return true;
}
bool result = true;
assert(solver->state != LinearSolver::STATE_VARIABLES_CONSTRUCT);
if (solver->state == LinearSolver::STATE_MATRIX_CONSTRUCT) {
/* create matrix from triplets */
solver->M.resize(solver->m, solver->n);
solver->M.setFromTriplets(solver->Mtriplets.begin(), solver->Mtriplets.end());
solver->Mtriplets.clear();
/* create least squares matrix */
if (solver->least_squares) {
solver->MtM = solver->M.transpose() * solver->M;
}
/* convert M to compressed column format */
EigenSparseMatrix &M = (solver->least_squares) ? solver->MtM : solver->M;
M.makeCompressed();
/* perform sparse LU factorization */
EigenSparseLU *sparseLU = new EigenSparseLU();
solver->sparseLU = sparseLU;
sparseLU->compute(M);
result = (sparseLU->info() == Eigen::Success);
solver->state = LinearSolver::STATE_MATRIX_SOLVED;
}
if (result) {
/* solve for each right hand side */
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
/* modify for locked variables */
EigenVectorX &b = solver->b[rhs];
for (int i = 0; i < solver->num_variables; i++) {
LinearSolver::Variable *variable = &solver->variable[i];
if (variable->locked) {
std::vector<LinearSolver::Coeff> &a = variable->a;
for (int j = 0; j < a.size(); j++) {
b[a[j].index] -= a[j].value * variable->value[rhs];
}
}
}
/* solve */
if (solver->least_squares) {
EigenVectorX Mtb = solver->M.transpose() * b;
solver->x[rhs] = solver->sparseLU->solve(Mtb);
}
else {
EigenVectorX &b = solver->b[rhs];
solver->x[rhs] = solver->sparseLU->solve(b);
}
if (solver->sparseLU->info() != Eigen::Success) {
result = false;
}
}
if (result) {
linear_solver_vector_to_variables(solver);
}
}
/* clear for next solve */
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
solver->b[rhs].setZero(solver->m);
}
return result;
}
/* Debugging */
void EIG_linear_solver_print_matrix(LinearSolver *solver)
{
std::cout << "A:" << solver->M << std::endl;
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
std::cout << "b " << rhs << ":" << solver->b[rhs] << std::endl;
}
if (solver->MtM.rows() && solver->MtM.cols()) {
std::cout << "AtA:" << solver->MtM << std::endl;
}
}