It has ~1.2x speed-up on CPU and ~1.5x speed-up on GPU (tested on Metal M2 Ultra). Individual samples are noisier, but equal time renders are mostly better. Note that volume emission renders differently than before. Pull Request: https://projects.blender.org/blender/blender/pulls/144451
249 lines
8.1 KiB
C++
249 lines
8.1 KiB
C++
/* SPDX-FileCopyrightText: 2011-2025 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/globals.h"
|
|
#include "kernel/sample/lcg.h"
|
|
|
|
#include "util/texture.h"
|
|
|
|
#if !defined(__KERNEL_METAL__) && !defined(__KERNEL_ONEAPI__)
|
|
# ifdef WITH_NANOVDB
|
|
# include "kernel/util/nanovdb.h"
|
|
# endif
|
|
#endif
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
#ifndef __KERNEL_GPU__
|
|
/* Make template functions private so symbols don't conflict between kernels with different
|
|
* instruction sets. */
|
|
namespace {
|
|
#endif
|
|
|
|
#ifdef WITH_NANOVDB
|
|
/* -------------------------------------------------------------------- */
|
|
/** Return the sample position for stochastical one-tap sampling.
|
|
* From "Stochastic Texture Filtering": https://arxiv.org/abs/2305.05810
|
|
* \{ */
|
|
ccl_device_inline float3 interp_tricubic_stochastic(const float3 P, ccl_private float3 &rand)
|
|
{
|
|
const float3 p = floor(P);
|
|
const float3 t = P - p;
|
|
|
|
/* Cubic interpolation weights. */
|
|
const float3 w[4] = {(((-1.0f / 6.0f) * t + 0.5f) * t - 0.5f) * t + (1.0f / 6.0f),
|
|
((0.5f * t - 1.0f) * t) * t + (2.0f / 3.0f),
|
|
((-0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f / 6.0f),
|
|
(1.0f / 6.0f) * t * t * t};
|
|
|
|
/* For reservoir sampling, always accept the first in the stream. */
|
|
float3 total_weight = w[0];
|
|
float3 offset = make_float3(-1.0f);
|
|
|
|
for (int j = 1; j < 4; j++) {
|
|
total_weight += w[j];
|
|
const float3 thresh = w[j] / total_weight;
|
|
const auto mask = rand < thresh;
|
|
offset = select(mask, make_float3(float(j) - 1.0f), offset);
|
|
rand = select(mask, safe_divide(rand, thresh), safe_divide(rand - thresh, 1.0f - thresh));
|
|
}
|
|
|
|
return p + offset;
|
|
}
|
|
|
|
ccl_device_inline float3 interp_trilinear_stochastic(const float3 P, const float3 rand)
|
|
{
|
|
const float3 p = floor(P);
|
|
const float3 t = P - p;
|
|
return select(rand < t, p + 1.0f, p);
|
|
}
|
|
|
|
ccl_device_inline float3 interp_stochastic(const float3 P,
|
|
ccl_private InterpolationType &interpolation,
|
|
ccl_private float3 &rand)
|
|
{
|
|
float3 P_new = P;
|
|
if (interpolation == INTERPOLATION_CUBIC) {
|
|
P_new = interp_tricubic_stochastic(P, rand);
|
|
}
|
|
else if (interpolation == INTERPOLATION_LINEAR) {
|
|
P_new = interp_trilinear_stochastic(P, rand);
|
|
}
|
|
else {
|
|
kernel_assert(interpolation == INTERPOLATION_CLOSEST);
|
|
}
|
|
interpolation = INTERPOLATION_CLOSEST;
|
|
return P_new;
|
|
}
|
|
/** \} */
|
|
|
|
template<typename OutT, typename Acc>
|
|
ccl_device OutT kernel_tex_image_interp_trilinear_nanovdb(ccl_private Acc &acc, const float3 P)
|
|
{
|
|
const float3 floor_P = floor(P);
|
|
const float3 t = P - floor_P;
|
|
const int3 index = make_int3(floor_P);
|
|
|
|
const int ix = index.x;
|
|
const int iy = index.y;
|
|
const int iz = index.z;
|
|
|
|
return mix(mix(mix(OutT(acc.getValue(make_int3(ix, iy, iz))),
|
|
OutT(acc.getValue(make_int3(ix, iy, iz + 1))),
|
|
t.z),
|
|
mix(OutT(acc.getValue(make_int3(ix, iy + 1, iz + 1))),
|
|
OutT(acc.getValue(make_int3(ix, iy + 1, iz))),
|
|
1.0f - t.z),
|
|
t.y),
|
|
mix(mix(OutT(acc.getValue(make_int3(ix + 1, iy + 1, iz))),
|
|
OutT(acc.getValue(make_int3(ix + 1, iy + 1, iz + 1))),
|
|
t.z),
|
|
mix(OutT(acc.getValue(make_int3(ix + 1, iy, iz + 1))),
|
|
OutT(acc.getValue(make_int3(ix + 1, iy, iz))),
|
|
1.0f - t.z),
|
|
1.0f - t.y),
|
|
t.x);
|
|
}
|
|
|
|
template<typename OutT, typename Acc>
|
|
ccl_device OutT kernel_tex_image_interp_tricubic_nanovdb(ccl_private Acc &acc, const float3 P)
|
|
{
|
|
const float3 floor_P = floor(P);
|
|
const float3 t = P - floor_P;
|
|
const int3 index = make_int3(floor_P);
|
|
|
|
const int xc[4] = {index.x - 1, index.x, index.x + 1, index.x + 2};
|
|
const int yc[4] = {index.y - 1, index.y, index.y + 1, index.y + 2};
|
|
const int zc[4] = {index.z - 1, index.z, index.z + 1, index.z + 2};
|
|
float u[4], v[4], w[4];
|
|
|
|
/* Some helper macros to keep code size reasonable.
|
|
* Lets the compiler inline all the matrix multiplications.
|
|
*/
|
|
# define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
|
|
{ \
|
|
u[0] = (((-1.0f / 6.0f) * t + 0.5f) * t - 0.5f) * t + (1.0f / 6.0f); \
|
|
u[1] = ((0.5f * t - 1.0f) * t) * t + (2.0f / 3.0f); \
|
|
u[2] = ((-0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f / 6.0f); \
|
|
u[3] = (1.0f / 6.0f) * t * t * t; \
|
|
} \
|
|
(void)0
|
|
|
|
# define DATA(x, y, z) (OutT(acc.getValue(make_int3(xc[x], yc[y], zc[z]))))
|
|
# define COL_TERM(col, row) \
|
|
(v[col] * (u[0] * DATA(0, col, row) + u[1] * DATA(1, col, row) + u[2] * DATA(2, col, row) + \
|
|
u[3] * DATA(3, col, row)))
|
|
# define ROW_TERM(row) \
|
|
(w[row] * (COL_TERM(0, row) + COL_TERM(1, row) + COL_TERM(2, row) + COL_TERM(3, row)))
|
|
|
|
SET_CUBIC_SPLINE_WEIGHTS(u, t.x);
|
|
SET_CUBIC_SPLINE_WEIGHTS(v, t.y);
|
|
SET_CUBIC_SPLINE_WEIGHTS(w, t.z);
|
|
|
|
/* Actual interpolation. */
|
|
return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);
|
|
|
|
# undef COL_TERM
|
|
# undef ROW_TERM
|
|
# undef DATA
|
|
# undef SET_CUBIC_SPLINE_WEIGHTS
|
|
}
|
|
|
|
template<typename OutT, typename T>
|
|
# if defined(__KERNEL_METAL__)
|
|
__attribute__((noinline))
|
|
# else
|
|
ccl_device_noinline
|
|
# endif
|
|
OutT kernel_tex_image_interp_nanovdb(const ccl_global TextureInfo &info,
|
|
float3 P,
|
|
const InterpolationType interp)
|
|
{
|
|
ccl_global nanovdb::NanoGrid<T> *const grid = (ccl_global nanovdb::NanoGrid<T> *)info.data;
|
|
|
|
if (interp == INTERPOLATION_CLOSEST) {
|
|
nanovdb::ReadAccessor<T> acc(grid->tree().root());
|
|
return OutT(acc.getValue(make_int3(floor(P))));
|
|
}
|
|
|
|
nanovdb::CachedReadAccessor<T> acc(grid->tree().root());
|
|
if (interp == INTERPOLATION_LINEAR) {
|
|
return kernel_tex_image_interp_trilinear_nanovdb<OutT>(acc, P);
|
|
}
|
|
|
|
return kernel_tex_image_interp_tricubic_nanovdb<OutT>(acc, P);
|
|
}
|
|
#endif /* WITH_NANOVDB */
|
|
|
|
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals kg,
|
|
ccl_private ShaderData *sd,
|
|
const int id,
|
|
float3 P,
|
|
InterpolationType interp,
|
|
const bool stochastic)
|
|
{
|
|
#ifdef WITH_NANOVDB
|
|
const ccl_global TextureInfo &info = kernel_data_fetch(texture_info, id);
|
|
|
|
if (info.use_transform_3d) {
|
|
P = transform_point(&info.transform_3d, P);
|
|
}
|
|
|
|
InterpolationType interpolation = (interp == INTERPOLATION_NONE) ?
|
|
(InterpolationType)info.interpolation :
|
|
interp;
|
|
|
|
/* A -0.5 offset is used to center the cubic samples around the sample point. */
|
|
P = P - make_float3(0.5f);
|
|
|
|
if (stochastic) {
|
|
float3 rand = lcg_step_float3(&sd->lcg_state);
|
|
P = interp_stochastic(P, interpolation, rand);
|
|
}
|
|
|
|
const ImageDataType data_type = (ImageDataType)info.data_type;
|
|
if (data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT) {
|
|
const float f = kernel_tex_image_interp_nanovdb<float, float>(info, P, interpolation);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
if (data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
|
|
const float3 f = kernel_tex_image_interp_nanovdb<float3, packed_float3>(
|
|
info, P, interpolation);
|
|
return make_float4(f, 1.0f);
|
|
}
|
|
if (data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT4) {
|
|
return kernel_tex_image_interp_nanovdb<float4, float4>(info, P, interpolation);
|
|
}
|
|
if (data_type == IMAGE_DATA_TYPE_NANOVDB_FPN) {
|
|
const float f = kernel_tex_image_interp_nanovdb<float, nanovdb::FpN>(info, P, interpolation);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
if (data_type == IMAGE_DATA_TYPE_NANOVDB_FP16) {
|
|
const float f = kernel_tex_image_interp_nanovdb<float, nanovdb::Fp16>(info, P, interpolation);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
if (data_type == IMAGE_DATA_TYPE_NANOVDB_EMPTY) {
|
|
return zero_float4();
|
|
}
|
|
#else
|
|
(void)kg;
|
|
(void)sd;
|
|
(void)id;
|
|
(void)P;
|
|
(void)interp;
|
|
(void)stochastic;
|
|
#endif
|
|
|
|
return make_float4(
|
|
TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B, TEX_IMAGE_MISSING_A);
|
|
}
|
|
|
|
#ifndef __KERNEL_GPU__
|
|
} /* Namespace. */
|
|
#endif
|
|
|
|
CCL_NAMESPACE_END
|