The outlines of volume grids in the viewport are noticeable "wobbly" when they should simply represent grid boxes. This is especially noticeable on simple regular grids such as the "Volume Cube" geometry node output. The reason is that the outlines generated by taking a triangulated mesh of the grid boxes and then growing it by successively scaling each triangle. The offset for each vertex grows proportional to its degree (number of connected edges). The fix is to divide each vertex's offset by its degree. The resulting mesh is much more regular and closer to to 1% desired growth factor. Old:  New:  Pull Request: https://projects.blender.org/blender/blender/pulls/111657
445 lines
14 KiB
C++
445 lines
14 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup bke
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_array.hh"
|
|
#include "BLI_math_matrix.h"
|
|
#include "BLI_math_vector.h"
|
|
#include "BLI_math_vector_types.hh"
|
|
#include "BLI_vector.hh"
|
|
|
|
#include "DNA_volume_types.h"
|
|
|
|
#include "BKE_volume.h"
|
|
#include "BKE_volume_openvdb.hh"
|
|
#include "BKE_volume_render.h"
|
|
|
|
#ifdef WITH_OPENVDB
|
|
# include <openvdb/openvdb.h>
|
|
# include <openvdb/tools/Dense.h>
|
|
#endif
|
|
|
|
/* Dense Voxels */
|
|
|
|
#ifdef WITH_OPENVDB
|
|
|
|
template<typename GridType, typename VoxelType>
|
|
static void extract_dense_voxels(const openvdb::GridBase &grid,
|
|
const openvdb::CoordBBox bbox,
|
|
VoxelType *r_voxels)
|
|
{
|
|
BLI_assert(grid.isType<GridType>());
|
|
openvdb::tools::Dense<VoxelType, openvdb::tools::LayoutXYZ> dense(bbox, r_voxels);
|
|
openvdb::tools::copyToDense(static_cast<const GridType &>(grid), dense);
|
|
}
|
|
|
|
static void extract_dense_float_voxels(const VolumeGridType grid_type,
|
|
const openvdb::GridBase &grid,
|
|
const openvdb::CoordBBox &bbox,
|
|
float *r_voxels)
|
|
{
|
|
switch (grid_type) {
|
|
case VOLUME_GRID_BOOLEAN:
|
|
return extract_dense_voxels<openvdb::BoolGrid, float>(grid, bbox, r_voxels);
|
|
case VOLUME_GRID_FLOAT:
|
|
return extract_dense_voxels<openvdb::FloatGrid, float>(grid, bbox, r_voxels);
|
|
case VOLUME_GRID_DOUBLE:
|
|
return extract_dense_voxels<openvdb::DoubleGrid, float>(grid, bbox, r_voxels);
|
|
case VOLUME_GRID_INT:
|
|
return extract_dense_voxels<openvdb::Int32Grid, float>(grid, bbox, r_voxels);
|
|
case VOLUME_GRID_INT64:
|
|
return extract_dense_voxels<openvdb::Int64Grid, float>(grid, bbox, r_voxels);
|
|
case VOLUME_GRID_MASK:
|
|
return extract_dense_voxels<openvdb::MaskGrid, float>(grid, bbox, r_voxels);
|
|
case VOLUME_GRID_VECTOR_FLOAT:
|
|
return extract_dense_voxels<openvdb::Vec3fGrid, openvdb::Vec3f>(
|
|
grid, bbox, reinterpret_cast<openvdb::Vec3f *>(r_voxels));
|
|
case VOLUME_GRID_VECTOR_DOUBLE:
|
|
return extract_dense_voxels<openvdb::Vec3dGrid, openvdb::Vec3f>(
|
|
grid, bbox, reinterpret_cast<openvdb::Vec3f *>(r_voxels));
|
|
case VOLUME_GRID_VECTOR_INT:
|
|
return extract_dense_voxels<openvdb::Vec3IGrid, openvdb::Vec3f>(
|
|
grid, bbox, reinterpret_cast<openvdb::Vec3f *>(r_voxels));
|
|
case VOLUME_GRID_POINTS:
|
|
case VOLUME_GRID_UNKNOWN:
|
|
/* Zero channels to copy. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void create_texture_to_object_matrix(const openvdb::Mat4d &grid_transform,
|
|
const openvdb::CoordBBox &bbox,
|
|
float r_texture_to_object[4][4])
|
|
{
|
|
float index_to_object[4][4];
|
|
memcpy(index_to_object, openvdb::Mat4s(grid_transform).asPointer(), sizeof(index_to_object));
|
|
|
|
float texture_to_index[4][4];
|
|
const openvdb::Vec3f loc = bbox.min().asVec3s();
|
|
const openvdb::Vec3f size = bbox.dim().asVec3s();
|
|
size_to_mat4(texture_to_index, size.asV());
|
|
copy_v3_v3(texture_to_index[3], loc.asV());
|
|
|
|
mul_m4_m4m4(r_texture_to_object, index_to_object, texture_to_index);
|
|
}
|
|
|
|
#endif
|
|
|
|
bool BKE_volume_grid_dense_floats(const Volume *volume,
|
|
const VolumeGrid *volume_grid,
|
|
DenseFloatVolumeGrid *r_dense_grid)
|
|
{
|
|
#ifdef WITH_OPENVDB
|
|
const VolumeGridType grid_type = BKE_volume_grid_type(volume_grid);
|
|
openvdb::GridBase::ConstPtr grid = BKE_volume_grid_openvdb_for_read(volume, volume_grid);
|
|
|
|
const openvdb::CoordBBox bbox = grid->evalActiveVoxelBoundingBox();
|
|
if (bbox.empty()) {
|
|
return false;
|
|
}
|
|
|
|
const openvdb::Vec3i resolution = bbox.dim().asVec3i();
|
|
const int64_t num_voxels = int64_t(resolution[0]) * int64_t(resolution[1]) *
|
|
int64_t(resolution[2]);
|
|
const int channels = BKE_volume_grid_channels(volume_grid);
|
|
const int elem_size = sizeof(float) * channels;
|
|
float *voxels = static_cast<float *>(MEM_malloc_arrayN(num_voxels, elem_size, __func__));
|
|
if (voxels == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
extract_dense_float_voxels(grid_type, *grid, bbox, voxels);
|
|
create_texture_to_object_matrix(grid->transform().baseMap()->getAffineMap()->getMat4(),
|
|
bbox,
|
|
r_dense_grid->texture_to_object);
|
|
|
|
r_dense_grid->voxels = voxels;
|
|
r_dense_grid->channels = channels;
|
|
copy_v3_v3_int(r_dense_grid->resolution, resolution.asV());
|
|
return true;
|
|
#endif
|
|
UNUSED_VARS(volume, volume_grid, r_dense_grid);
|
|
return false;
|
|
}
|
|
|
|
void BKE_volume_dense_float_grid_clear(DenseFloatVolumeGrid *dense_grid)
|
|
{
|
|
if (dense_grid->voxels != nullptr) {
|
|
MEM_freeN(dense_grid->voxels);
|
|
}
|
|
}
|
|
|
|
/* Wireframe */
|
|
|
|
#ifdef WITH_OPENVDB
|
|
|
|
/** Returns bounding boxes that approximate the shape of the volume stored in the grid. */
|
|
template<typename GridType>
|
|
static blender::Vector<openvdb::CoordBBox> get_bounding_boxes(const GridType &grid,
|
|
const bool coarse)
|
|
{
|
|
using TreeType = typename GridType::TreeType;
|
|
using Depth2Type = typename TreeType::RootNodeType::ChildNodeType::ChildNodeType;
|
|
using NodeCIter = typename TreeType::NodeCIter;
|
|
|
|
blender::Vector<openvdb::CoordBBox> boxes;
|
|
const int depth = coarse ? 2 : 3;
|
|
|
|
NodeCIter iter = grid.tree().cbeginNode();
|
|
iter.setMaxDepth(depth);
|
|
|
|
for (; iter; ++iter) {
|
|
if (iter.getDepth() != depth) {
|
|
continue;
|
|
}
|
|
|
|
openvdb::CoordBBox box;
|
|
if (depth == 2) {
|
|
/* Internal node at depth 2. */
|
|
const Depth2Type *node = nullptr;
|
|
iter.getNode(node);
|
|
if (node) {
|
|
node->evalActiveBoundingBox(box, false);
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
else {
|
|
/* Leaf node. */
|
|
if (!iter.getBoundingBox(box)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* +1 to convert from exclusive to inclusive bounds. */
|
|
box.max() = box.max().offsetBy(1);
|
|
|
|
boxes.append(box);
|
|
}
|
|
|
|
return boxes;
|
|
}
|
|
|
|
struct GetBoundingBoxesOp {
|
|
const openvdb::GridBase &grid;
|
|
const bool coarse;
|
|
|
|
template<typename GridType> blender::Vector<openvdb::CoordBBox> operator()()
|
|
{
|
|
return get_bounding_boxes(static_cast<const GridType &>(grid), coarse);
|
|
}
|
|
};
|
|
|
|
static blender::Vector<openvdb::CoordBBox> get_bounding_boxes(VolumeGridType grid_type,
|
|
const openvdb::GridBase &grid,
|
|
const bool coarse)
|
|
{
|
|
GetBoundingBoxesOp op{grid, coarse};
|
|
return BKE_volume_grid_type_operation(grid_type, op);
|
|
}
|
|
|
|
static void boxes_to_center_points(blender::Span<openvdb::CoordBBox> boxes,
|
|
const openvdb::math::Transform &transform,
|
|
blender::MutableSpan<blender::float3> r_verts)
|
|
{
|
|
BLI_assert(boxes.size() == r_verts.size());
|
|
for (const int i : boxes.index_range()) {
|
|
openvdb::Vec3d center = transform.indexToWorld(boxes[i].getCenter());
|
|
r_verts[i] = blender::float3(center[0], center[1], center[2]);
|
|
}
|
|
}
|
|
|
|
static void boxes_to_corner_points(blender::Span<openvdb::CoordBBox> boxes,
|
|
const openvdb::math::Transform &transform,
|
|
blender::MutableSpan<blender::float3> r_verts)
|
|
{
|
|
BLI_assert(boxes.size() * 8 == r_verts.size());
|
|
for (const int i : boxes.index_range()) {
|
|
const openvdb::CoordBBox &box = boxes[i];
|
|
|
|
/* The ordering of the corner points is lexicographic. */
|
|
std::array<openvdb::Coord, 8> corners;
|
|
box.getCornerPoints(corners.data());
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
openvdb::Coord corner_i = corners[j];
|
|
openvdb::Vec3d corner_d = transform.indexToWorld(corner_i);
|
|
r_verts[8 * i + j] = blender::float3(corner_d[0], corner_d[1], corner_d[2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void boxes_to_edge_mesh(blender::Span<openvdb::CoordBBox> boxes,
|
|
const openvdb::math::Transform &transform,
|
|
blender::Vector<blender::float3> &r_verts,
|
|
blender::Vector<std::array<int, 2>> &r_edges)
|
|
{
|
|
/* TODO: Deduplicate edges, hide flat edges? */
|
|
|
|
const int box_edges[12][2] = {
|
|
{0, 1},
|
|
{0, 2},
|
|
{0, 4},
|
|
{1, 3},
|
|
{1, 5},
|
|
{2, 3},
|
|
{2, 6},
|
|
{3, 7},
|
|
{4, 5},
|
|
{4, 6},
|
|
{5, 7},
|
|
{6, 7},
|
|
};
|
|
|
|
int vert_offset = r_verts.size();
|
|
int edge_offset = r_edges.size();
|
|
|
|
const int vert_amount = 8 * boxes.size();
|
|
const int edge_amount = 12 * boxes.size();
|
|
|
|
r_verts.resize(r_verts.size() + vert_amount);
|
|
r_edges.resize(r_edges.size() + edge_amount);
|
|
boxes_to_corner_points(boxes, transform, r_verts.as_mutable_span().take_back(vert_amount));
|
|
|
|
for (int i = 0; i < boxes.size(); i++) {
|
|
for (int j = 0; j < 12; j++) {
|
|
r_edges[edge_offset + j] = {vert_offset + box_edges[j][0], vert_offset + box_edges[j][1]};
|
|
}
|
|
vert_offset += 8;
|
|
edge_offset += 12;
|
|
}
|
|
}
|
|
|
|
static void boxes_to_cube_mesh(blender::Span<openvdb::CoordBBox> boxes,
|
|
const openvdb::math::Transform &transform,
|
|
blender::Vector<blender::float3> &r_verts,
|
|
blender::Vector<std::array<int, 3>> &r_tris)
|
|
{
|
|
const int box_tris[12][3] = {
|
|
{0, 1, 4},
|
|
{4, 1, 5},
|
|
{0, 2, 1},
|
|
{1, 2, 3},
|
|
{1, 3, 5},
|
|
{5, 3, 7},
|
|
{6, 4, 5},
|
|
{7, 5, 6},
|
|
{2, 0, 4},
|
|
{2, 4, 6},
|
|
{3, 7, 2},
|
|
{6, 2, 7},
|
|
};
|
|
|
|
int vert_offset = r_verts.size();
|
|
int tri_offset = r_tris.size();
|
|
|
|
const int vert_amount = 8 * boxes.size();
|
|
const int tri_amount = 12 * boxes.size();
|
|
|
|
r_verts.resize(r_verts.size() + vert_amount);
|
|
r_tris.resize(r_tris.size() + tri_amount);
|
|
boxes_to_corner_points(boxes, transform, r_verts.as_mutable_span().take_back(vert_amount));
|
|
|
|
for (int i = 0; i < boxes.size(); i++) {
|
|
for (int j = 0; j < 12; j++) {
|
|
r_tris[tri_offset + j] = {vert_offset + box_tris[j][0],
|
|
vert_offset + box_tris[j][1],
|
|
vert_offset + box_tris[j][2]};
|
|
}
|
|
vert_offset += 8;
|
|
tri_offset += 12;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void BKE_volume_grid_wireframe(const Volume *volume,
|
|
const VolumeGrid *volume_grid,
|
|
BKE_volume_wireframe_cb cb,
|
|
void *cb_userdata)
|
|
{
|
|
if (volume->display.wireframe_type == VOLUME_WIREFRAME_NONE) {
|
|
cb(cb_userdata, nullptr, nullptr, 0, 0);
|
|
return;
|
|
}
|
|
|
|
#ifdef WITH_OPENVDB
|
|
openvdb::GridBase::ConstPtr grid = BKE_volume_grid_openvdb_for_read(volume, volume_grid);
|
|
|
|
if (volume->display.wireframe_type == VOLUME_WIREFRAME_BOUNDS) {
|
|
/* Bounding box. */
|
|
openvdb::CoordBBox box;
|
|
blender::Vector<blender::float3> verts;
|
|
blender::Vector<std::array<int, 2>> edges;
|
|
if (grid->baseTree().evalLeafBoundingBox(box)) {
|
|
boxes_to_edge_mesh({box}, grid->transform(), verts, edges);
|
|
}
|
|
cb(cb_userdata,
|
|
(float(*)[3])verts.data(),
|
|
(int(*)[2])edges.data(),
|
|
verts.size(),
|
|
edges.size());
|
|
}
|
|
else {
|
|
blender::Vector<openvdb::CoordBBox> boxes = get_bounding_boxes(
|
|
BKE_volume_grid_type(volume_grid),
|
|
*grid,
|
|
volume->display.wireframe_detail == VOLUME_WIREFRAME_COARSE);
|
|
|
|
blender::Vector<blender::float3> verts;
|
|
blender::Vector<std::array<int, 2>> edges;
|
|
|
|
if (volume->display.wireframe_type == VOLUME_WIREFRAME_POINTS) {
|
|
verts.resize(boxes.size());
|
|
boxes_to_center_points(boxes, grid->transform(), verts);
|
|
}
|
|
else {
|
|
boxes_to_edge_mesh(boxes, grid->transform(), verts, edges);
|
|
}
|
|
|
|
cb(cb_userdata,
|
|
(float(*)[3])verts.data(),
|
|
(int(*)[2])edges.data(),
|
|
verts.size(),
|
|
edges.size());
|
|
}
|
|
|
|
#else
|
|
UNUSED_VARS(volume, volume_grid);
|
|
cb(cb_userdata, nullptr, nullptr, 0, 0);
|
|
#endif
|
|
}
|
|
|
|
#ifdef WITH_OPENVDB
|
|
static void grow_triangles(blender::MutableSpan<blender::float3> verts,
|
|
blender::Span<std::array<int, 3>> tris,
|
|
const float factor)
|
|
{
|
|
/* Compute the offset for every vertex based on the connected edges.
|
|
* This formula simply tries increases the length of all edges. */
|
|
blender::Array<blender::float3> offsets(verts.size(), {0, 0, 0});
|
|
blender::Array<float> weights(verts.size(), 0.0f);
|
|
for (const std::array<int, 3> &tri : tris) {
|
|
offsets[tri[0]] += factor * (2 * verts[tri[0]] - verts[tri[1]] - verts[tri[2]]);
|
|
offsets[tri[1]] += factor * (2 * verts[tri[1]] - verts[tri[0]] - verts[tri[2]]);
|
|
offsets[tri[2]] += factor * (2 * verts[tri[2]] - verts[tri[0]] - verts[tri[1]]);
|
|
weights[tri[0]] += 1.0;
|
|
weights[tri[1]] += 1.0;
|
|
weights[tri[2]] += 1.0;
|
|
}
|
|
/* Apply the computed offsets. */
|
|
for (const int i : verts.index_range()) {
|
|
if (weights[i] > 0.0f) {
|
|
verts[i] += offsets[i] / weights[i];
|
|
}
|
|
}
|
|
}
|
|
#endif /* WITH_OPENVDB */
|
|
|
|
void BKE_volume_grid_selection_surface(const Volume *volume,
|
|
const VolumeGrid *volume_grid,
|
|
BKE_volume_selection_surface_cb cb,
|
|
void *cb_userdata)
|
|
{
|
|
#ifdef WITH_OPENVDB
|
|
openvdb::GridBase::ConstPtr grid = BKE_volume_grid_openvdb_for_read(volume, volume_grid);
|
|
blender::Vector<openvdb::CoordBBox> boxes = get_bounding_boxes(
|
|
BKE_volume_grid_type(volume_grid), *grid, true);
|
|
|
|
blender::Vector<blender::float3> verts;
|
|
blender::Vector<std::array<int, 3>> tris;
|
|
boxes_to_cube_mesh(boxes, grid->transform(), verts, tris);
|
|
|
|
/* By slightly scaling the individual boxes up, we can avoid some artifacts when drawing the
|
|
* selection outline. */
|
|
const float offset_factor = 0.01f;
|
|
grow_triangles(verts, tris, offset_factor);
|
|
|
|
cb(cb_userdata, (float(*)[3])verts.data(), (int(*)[3])tris.data(), verts.size(), tris.size());
|
|
#else
|
|
UNUSED_VARS(volume, volume_grid);
|
|
cb(cb_userdata, nullptr, nullptr, 0, 0);
|
|
#endif
|
|
}
|
|
|
|
/* Render */
|
|
|
|
float BKE_volume_density_scale(const Volume *volume, const float matrix[4][4])
|
|
{
|
|
if (volume->render.space == VOLUME_SPACE_OBJECT) {
|
|
float unit[3] = {1.0f, 1.0f, 1.0f};
|
|
normalize_v3(unit);
|
|
mul_mat3_m4_v3(matrix, unit);
|
|
return 1.0f / len_v3(unit);
|
|
}
|
|
|
|
return 1.0f;
|
|
}
|