Files
test/source/blender/gpu/shaders/gpu_shader_codegen_lib.glsl
Campbell Barton 0148293520 License headers: add SPDX licenses for '*.glsl' files
When GLSL sources were first included in Blender they were treated as
data (like blend files) and had no license header.
Since then GLSL has been used for more sophisticated features
(EEVEE & real-time compositing)
where it makes sense to include licensing information.

Add SPDX copyright headers to *.glsl files, matching headers used for
C/C++, also include GLSL files in the license checking script.

As leading C-comments are now stripped,
added binary size of comments is no longer a concern.

Ref !111247
2023-08-24 10:57:03 +10:00

290 lines
6.2 KiB
GLSL

/* SPDX-FileCopyrightText: 2020-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
vec3 calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2)
{
vec3 edge21 = pos2 - pos1;
vec3 edge10 = pos1 - pos0;
vec3 edge02 = pos0 - pos2;
vec3 d21 = normalize(edge21);
vec3 d10 = normalize(edge10);
vec3 d02 = normalize(edge02);
vec3 dists;
float d = dot(d21, edge02);
dists.x = sqrt(dot(edge02, edge02) - d * d);
d = dot(d02, edge10);
dists.y = sqrt(dot(edge10, edge10) - d * d);
d = dot(d10, edge21);
dists.z = sqrt(dot(edge21, edge21) - d * d);
return dists;
}
vec2 calc_barycentric_co(int vertid)
{
vec2 bary;
bary.x = float((vertid % 3) == 0);
bary.y = float((vertid % 3) == 1);
return bary;
}
#ifdef HAIR_SHADER
/* Hairs uv and col attributes are passed by bufferTextures. */
# define DEFINE_ATTR(type, attr) uniform samplerBuffer attr
# define GET_ATTR(type, attr) hair_get_customdata_##type(attr)
# define barycentric_get() hair_get_barycentric()
# define barycentric_resolve(bary) hair_resolve_barycentric(bary)
vec3 orco_get(vec3 local_pos, mat4 modelmatinv, vec4 orco_madd[2], const samplerBuffer orco_samp)
{
/* TODO: fix ORCO with modifiers. */
vec3 orco = (modelmatinv * vec4(local_pos, 1.0)).xyz;
return orco_madd[0].xyz + orco * orco_madd[1].xyz;
}
float hair_len_get(int id, const samplerBuffer len)
{
return texelFetch(len, id).x;
}
vec4 tangent_get(const samplerBuffer attr, mat3 normalmat)
{
/* Unsupported */
return vec4(0.0);
}
#else /* MESH_SHADER */
# define DEFINE_ATTR(type, attr) in type attr
# define GET_ATTR(type, attr) attr
/* Calculated in geom shader later with calc_barycentric_co. */
# define barycentric_get() vec2(0)
# define barycentric_resolve(bary) bary
vec3 orco_get(vec3 local_pos, mat4 modelmatinv, vec4 orco_madd[2], vec4 orco)
{
/* If the object does not have any deformation, the orco layer calculation is done on the fly
* using the orco_madd factors.
* We know when there is no orco layer when orco.w is 1.0 because it uses the generic vertex
* attribute (which is [0,0,0,1]). */
if (orco.w == 0.0) {
return orco.xyz * 0.5 + 0.5;
}
else {
return orco_madd[0].xyz + local_pos * orco_madd[1].xyz;
}
}
float hair_len_get(int id, const float len)
{
return len;
}
vec4 tangent_get(vec4 attr, mat3 normalmat)
{
vec4 tangent;
tangent.xyz = normalmat * attr.xyz;
tangent.w = attr.w;
float len_sqr = dot(tangent.xyz, tangent.xyz);
/* Normalize only if vector is not null. */
if (len_sqr > 0.0) {
tangent.xyz *= inversesqrt(len_sqr);
}
return tangent;
}
#endif
/* Assumes GPU_VEC4 is color data. So converting to luminance like cycles. */
#define float_from_vec4(v) dot(v.rgb, vec3(0.2126, 0.7152, 0.0722))
#define float_from_vec3(v) avg(v.rgb)
#define float_from_vec2(v) v.r
#define vec2_from_vec4(v) vec2(avg(v.rgb), v.a)
#define vec2_from_vec3(v) vec2(avg(v.rgb), 1.0)
#define vec2_from_float(v) vec2(v)
#define vec3_from_vec4(v) v.rgb
#define vec3_from_vec2(v) v.rrr
#define vec3_from_float(v) vec3(v)
#define vec4_from_vec3(v) vec4(v, 1.0)
#define vec4_from_vec2(v) v.rrrg
#define vec4_from_float(v) vec4(vec3(v), 1.0)
/* TODO: Move to shader_shared. */
#define RAY_TYPE_CAMERA 0
#define RAY_TYPE_SHADOW 1
#define RAY_TYPE_DIFFUSE 2
#define RAY_TYPE_GLOSSY 3
#ifdef GPU_FRAGMENT_SHADER
# define FrontFacing gl_FrontFacing
#else
# define FrontFacing true
#endif
struct ClosureDiffuse {
float weight;
vec3 color;
vec3 N;
vec3 sss_radius;
uint sss_id;
};
struct ClosureTranslucent {
float weight;
vec3 color;
vec3 N;
};
struct ClosureReflection {
float weight;
vec3 color;
vec3 N;
float roughness;
};
struct ClosureRefraction {
float weight;
vec3 color;
vec3 N;
float roughness;
float ior;
};
struct ClosureHair {
float weight;
vec3 color;
float offset;
vec2 roughness;
vec3 T;
};
struct ClosureVolumeScatter {
float weight;
vec3 scattering;
float anisotropy;
};
struct ClosureVolumeAbsorption {
float weight;
vec3 absorption;
};
struct ClosureEmission {
float weight;
vec3 emission;
};
struct ClosureTransparency {
float weight;
vec3 transmittance;
float holdout;
};
struct GlobalData {
/** World position. */
vec3 P;
/** Surface Normal. Normalized, overridden by bump displacement. */
vec3 N;
/** Raw interpolated normal (non-normalized) data. */
vec3 Ni;
/** Geometric Normal. */
vec3 Ng;
/** Curve Tangent Space. */
vec3 curve_T, curve_B, curve_N;
/** Barycentric coordinates. */
vec2 barycentric_coords;
vec3 barycentric_dists;
/** Ray properties (approximation). */
int ray_type;
float ray_depth;
float ray_length;
/** Hair time along hair length. 0 at base 1 at tip. */
float hair_time;
/** Hair time along width of the hair. */
float hair_time_width;
/** Hair thickness in world space. */
float hair_thickness;
/** Index of the strand for per strand effects. */
int hair_strand_id;
/** Is hair. */
bool is_strand;
};
GlobalData g_data;
#ifndef GPU_FRAGMENT_SHADER
/* Stubs. */
vec3 dF_impl(vec3 v)
{
return vec3(0.0);
}
void dF_branch(float fn, out vec2 result)
{
result = vec2(0.0);
}
void dF_branch_incomplete(float fn, out vec2 result)
{
result = vec2(0.0);
}
#elif 0 /* TODO(@fclem): User Option? */
/* Fast derivatives */
vec3 dF_impl(vec3 v)
{
return vec3(0.0);
}
void dF_branch(float fn, out vec2 result)
{
result.x = DFDX_SIGN * dFdx(fn);
result.y = DFDY_SIGN * dFdy(fn);
}
#else
/* Precise derivatives */
int g_derivative_flag = 0;
vec3 dF_impl(vec3 v)
{
if (g_derivative_flag > 0) {
return DFDX_SIGN * dFdx(v);
}
else if (g_derivative_flag < 0) {
return DFDY_SIGN * dFdy(v);
}
return vec3(0.0);
}
# define dF_branch(fn, result) \
if (true) { \
g_derivative_flag = 1; \
result.x = (fn); \
g_derivative_flag = -1; \
result.y = (fn); \
g_derivative_flag = 0; \
result -= vec2((fn)); \
}
/* Used when the non-offset value is already computed elsewhere */
# define dF_branch_incomplete(fn, result) \
if (true) { \
g_derivative_flag = 1; \
result.x = (fn); \
g_derivative_flag = -1; \
result.y = (fn); \
g_derivative_flag = 0; \
}
#endif
/* TODO(fclem): Remove. */
#define CODEGEN_LIB