Files
test/source/blender/io/collada/BCMath.cpp
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

233 lines
4.9 KiB
C++

/* SPDX-FileCopyrightText: 2008 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BLI_utildefines.h"
#include "BCMath.h"
#include "BlenderContext.h"
#include "BLI_math_matrix.h"
void BCQuat::rotate_to(Matrix &mat_to)
{
Quat qd;
Matrix matd;
Matrix mati;
Matrix mat_from;
quat_to_mat4(mat_from, q);
/* Calculate the difference matrix matd between mat_from and mat_to */
invert_m4_m4(mati, mat_from);
mul_m4_m4m4(matd, mati, mat_to);
mat4_to_quat(qd, matd);
mul_qt_qtqt(q, qd, q); /* rotate to the final rotation to mat_to */
}
BCMatrix::BCMatrix(const BCMatrix &mat)
{
set_transform(mat.matrix);
}
BCMatrix::BCMatrix(Matrix &mat)
{
set_transform(mat);
}
BCMatrix::BCMatrix(Object *ob)
{
set_transform(ob);
}
BCMatrix::BCMatrix()
{
unit();
}
BCMatrix::BCMatrix(BC_global_forward_axis global_forward_axis, BC_global_up_axis global_up_axis)
{
float mrot[3][3];
float mat[4][4];
mat3_from_axis_conversion(
global_forward_axis, global_up_axis, BC_DEFAULT_FORWARD, BC_DEFAULT_UP, mrot);
copy_m4_m3(mat, mrot);
set_transform(mat);
}
void BCMatrix::add_transform(const Matrix &mat, bool inverted)
{
add_transform(this->matrix, mat, this->matrix, inverted);
}
void BCMatrix::add_transform(const BCMatrix &mat, bool inverted)
{
add_transform(this->matrix, mat.matrix, this->matrix, inverted);
}
void BCMatrix::apply_transform(const BCMatrix &mat, bool inverted)
{
apply_transform(this->matrix, mat.matrix, this->matrix, inverted);
}
void BCMatrix::add_transform(Matrix &to,
const Matrix &transform,
const Matrix &from,
bool inverted)
{
if (inverted) {
Matrix globinv;
invert_m4_m4(globinv, transform);
add_transform(to, globinv, from, /*inverted=*/false);
}
else {
mul_m4_m4m4(to, transform, from);
}
}
void BCMatrix::apply_transform(Matrix &to,
const Matrix &transform,
const Matrix &from,
bool inverse)
{
Matrix globinv;
invert_m4_m4(globinv, transform);
if (inverse) {
add_transform(to, globinv, from, /*inverted=*/false);
}
else {
mul_m4_m4m4(to, transform, from);
mul_m4_m4m4(to, to, globinv);
}
}
void BCMatrix::add_inverted_transform(Matrix &to, const Matrix &transform, const Matrix &from)
{
Matrix workmat;
invert_m4_m4(workmat, transform);
mul_m4_m4m4(to, workmat, from);
}
void BCMatrix::set_transform(Object *ob)
{
Matrix lmat;
BKE_object_matrix_local_get(ob, lmat);
copy_m4_m4(matrix, lmat);
mat4_decompose(this->loc, this->q, this->size, lmat);
quat_to_compatible_eul(this->rot, ob->rot, this->q);
}
void BCMatrix::set_transform(Matrix &mat)
{
copy_m4_m4(matrix, mat);
mat4_decompose(this->loc, this->q, this->size, mat);
quat_to_eul(this->rot, this->q);
}
void BCMatrix::copy(Matrix &r, Matrix &a)
{
/* destination comes first: */
memcpy(r, a, sizeof(Matrix));
}
void BCMatrix::transpose(Matrix &mat)
{
transpose_m4(mat);
}
void BCMatrix::sanitize(Matrix &mat, int precision)
{
for (auto &row : mat) {
for (float &cell : row) {
double val = double(cell);
val = double_round(val, precision);
cell = float(val);
}
}
}
void BCMatrix::sanitize(DMatrix &mat, int precision)
{
for (auto &row : mat) {
for (double &cell : row) {
cell = double_round(cell, precision);
}
}
}
void BCMatrix::unit()
{
unit_m4(this->matrix);
mat4_decompose(this->loc, this->q, this->size, this->matrix);
quat_to_eul(this->rot, this->q);
}
void BCMatrix::get_matrix(DMatrix &mat, const bool transposed, const int precision) const
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
float val = (transposed) ? matrix[j][i] : matrix[i][j];
if (precision >= 0) {
val = floor(val * pow(10, precision) + 0.5) / pow(10, precision);
}
mat[i][j] = val;
}
}
}
void BCMatrix::get_matrix(Matrix &mat,
const bool transposed,
const int precision,
const bool inverted) const
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
float val = (transposed) ? matrix[j][i] : matrix[i][j];
if (precision >= 0) {
val = floor(val * pow(10, precision) + 0.5) / pow(10, precision);
}
mat[i][j] = val;
}
}
if (inverted) {
invert_m4(mat);
}
}
bool BCMatrix::in_range(const BCMatrix &other, float distance) const
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (fabs(other.matrix[i][j] - matrix[i][j]) > distance) {
return false;
}
}
}
return true;
}
float (&BCMatrix::location() const)[3]
{
return loc;
}
float (&BCMatrix::rotation() const)[3]
{
return rot;
}
float (&BCMatrix::scale() const)[3]
{
return size;
}
float (&BCMatrix::quat() const)[4]
{
return q;
}