Listing the "Blender Foundation" as copyright holder implied the Blender Foundation holds copyright to files which may include work from many developers. While keeping copyright on headers makes sense for isolated libraries, Blender's own code may be refactored or moved between files in a way that makes the per file copyright holders less meaningful. Copyright references to the "Blender Foundation" have been replaced with "Blender Authors", with the exception of `./extern/` since these this contains libraries which are more isolated, any changed to license headers there can be handled on a case-by-case basis. Some directories in `./intern/` have also been excluded: - `./intern/cycles/` it's own `AUTHORS` file is planned. - `./intern/opensubdiv/`. An "AUTHORS" file has been added, using the chromium projects authors file as a template. Design task: #110784 Ref !110783.
117 lines
3.0 KiB
C++
117 lines
3.0 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "BLI_math_axis_angle_types.hh"
|
|
#include "BLI_math_euler_types.hh"
|
|
#include "BLI_math_quaternion_types.hh"
|
|
|
|
#include "BLI_math_matrix.hh"
|
|
#include "BLI_math_quaternion.hh"
|
|
|
|
namespace blender::math {
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Constructors
|
|
* \{ */
|
|
|
|
template<typename T, typename AngleT>
|
|
AxisAngleBase<T, AngleT>::AxisAngleBase(const VecBase<T, 3> &axis, const AngleT &angle)
|
|
{
|
|
BLI_assert(is_unit_scale(axis));
|
|
axis_ = axis;
|
|
angle_ = angle;
|
|
}
|
|
|
|
template<typename T, typename AngleT>
|
|
AxisAngleBase<T, AngleT>::AxisAngleBase(const AxisSigned axis, const AngleT &angle)
|
|
{
|
|
axis_ = to_vector<VecBase<T, 3>>(axis);
|
|
angle_ = angle;
|
|
}
|
|
|
|
template<typename T, typename AngleT>
|
|
AxisAngleBase<T, AngleT>::AxisAngleBase(const VecBase<T, 3> &from, const VecBase<T, 3> &to)
|
|
{
|
|
BLI_assert(is_unit_scale(from));
|
|
BLI_assert(is_unit_scale(to));
|
|
|
|
T sin;
|
|
T cos = dot(from, to);
|
|
axis_ = normalize_and_get_length(cross(from, to), sin);
|
|
|
|
if (sin <= FLT_EPSILON) {
|
|
if (cos > T(0)) {
|
|
/* Same vectors, zero rotation... */
|
|
*this = identity();
|
|
return;
|
|
}
|
|
/* Colinear but opposed vectors, 180 rotation... */
|
|
axis_ = normalize(orthogonal(from));
|
|
sin = T(0);
|
|
cos = T(-1);
|
|
}
|
|
/* Avoid calculating the angle if possible. */
|
|
angle_ = AngleT(cos, sin);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Conversion to Quaternions
|
|
* \{ */
|
|
|
|
template<typename T, typename AngleT>
|
|
QuaternionBase<T> to_quaternion(const AxisAngleBase<T, AngleT> &axis_angle)
|
|
{
|
|
BLI_assert(math::is_unit_scale(axis_angle.axis()));
|
|
|
|
AngleT half_angle = axis_angle.angle() / 2;
|
|
T hs = math::sin(half_angle);
|
|
T hc = math::cos(half_angle);
|
|
|
|
VecBase<T, 3> xyz = axis_angle.axis() * hs;
|
|
return QuaternionBase<T>(hc, xyz.x, xyz.y, xyz.z);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Conversion to Euler
|
|
* \{ */
|
|
|
|
template<typename T, typename AngleT>
|
|
Euler3Base<T> to_euler(const AxisAngleBase<T, AngleT> &axis_angle, EulerOrder order)
|
|
{
|
|
/* Use quaternions as intermediate representation for now... */
|
|
return to_euler(to_quaternion(axis_angle), order);
|
|
}
|
|
|
|
template<typename T, typename AngleT>
|
|
EulerXYZBase<T> to_euler(const AxisAngleBase<T, AngleT> &axis_angle)
|
|
{
|
|
/* Check easy and exact conversions first. */
|
|
const VecBase<T, 3> axis = axis_angle.axis();
|
|
if (axis.x == T(1)) {
|
|
return EulerXYZBase<T>(T(axis_angle.angle()), T(0), T(0));
|
|
}
|
|
else if (axis.y == T(1)) {
|
|
return EulerXYZBase<T>(T(0), T(axis_angle.angle()), T(0));
|
|
}
|
|
else if (axis.z == T(1)) {
|
|
return EulerXYZBase<T>(T(0), T(0), T(axis_angle.angle()));
|
|
}
|
|
/* Use quaternions as intermediate representation for now... */
|
|
return to_euler(to_quaternion(axis_angle));
|
|
}
|
|
|
|
/** \} */
|
|
|
|
} // namespace blender::math
|