Files
test/source/blender/blenlib/intern/bitmap_draw_2d.c
Sergey Sharybin c1bc70b711 Cleanup: Add a copyright notice to files and use SPDX format
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.

This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.

Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.

Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:

    https://reuse.software/faq/
2023-05-31 16:19:06 +02:00

477 lines
13 KiB
C

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*
* Utility functions for primitive drawing operations.
*/
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "BLI_bitmap_draw_2d.h"
#include "BLI_math_base.h"
#include "BLI_sort.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
/* -------------------------------------------------------------------- */
/** \name Draw Line
* \{ */
void BLI_bitmap_draw_2d_line_v2v2i(const int p1[2],
const int p2[2],
bool (*callback)(int, int, void *),
void *user_data)
{
/* Bresenham's line algorithm. */
int x1 = p1[0];
int y1 = p1[1];
int x2 = p2[0];
int y2 = p2[1];
if (callback(x1, y1, user_data) == 0) {
return;
}
/* if x1 == x2 or y1 == y2, then it does not matter what we set here */
const int sign_x = (x2 > x1) ? 1 : -1;
const int sign_y = (y2 > y1) ? 1 : -1;
const int delta_x = (sign_x == 1) ? (x2 - x1) : (x1 - x2);
const int delta_y = (sign_y == 1) ? (y2 - y1) : (y1 - y2);
const int delta_x_step = delta_x * 2;
const int delta_y_step = delta_y * 2;
if (delta_x >= delta_y) {
/* error may go below zero */
int error = delta_y_step - delta_x;
while (x1 != x2) {
if (error >= 0) {
if (error || (sign_x == 1)) {
y1 += sign_y;
error -= delta_x_step;
}
/* else do nothing */
}
/* else do nothing */
x1 += sign_x;
error += delta_y_step;
if (callback(x1, y1, user_data) == 0) {
return;
}
}
}
else {
/* error may go below zero */
int error = delta_x_step - delta_y;
while (y1 != y2) {
if (error >= 0) {
if (error || (sign_y == 1)) {
x1 += sign_x;
error -= delta_y_step;
}
/* else do nothing */
}
/* else do nothing */
y1 += sign_y;
error += delta_x_step;
if (callback(x1, y1, user_data) == 0) {
return;
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Filled Triangle
* \{ */
/**
* Fill a triangle
*
* Standard algorithm,
* See: http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
*
* Changes to the basic implementation:
*
* - Reuse slope calculation when drawing the second triangle.
* - Don't calculate the 4th point at all for the triangle split.
* - Order line drawing from left to right (minor detail).
* - 1-pixel offsets are applied so adjacent triangles don't overlap.
*
* This is not clipped, a clipped version can be added if needed.
*/
/* Macros could be moved to a shared location. */
#define ORDERED_SWAP(ty, a, b) \
if (a > b) { \
SWAP(ty, a, b); \
} \
((void)0)
#define ORDERED_SWAP_BY(ty, a, b, by) \
if ((a by) > (b by)) { \
SWAP(ty, a, b); \
} \
((void)0)
#define ORDER_VARS2(ty, a, b) \
{ \
ORDERED_SWAP(ty, a, b); \
} \
((void)0)
#define ORDER_VARS3_BY(ty, a, b, c, by) \
{ \
ORDERED_SWAP_BY(ty, b, c, by); \
ORDERED_SWAP_BY(ty, a, c, by); \
ORDERED_SWAP_BY(ty, a, b, by); \
} \
((void)0)
static float inv_slope(const int a[2], const int b[2])
{
return ((float)(a[0] - b[0]) / (float)(a[1] - b[1]));
}
/**
* <pre>
* *---*
* \ /
* *
* </pre>
*/
static void draw_tri_flat_max(const int p[2],
const int max_y,
const float inv_slope1,
const float inv_slope2,
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
float cur_x1 = (float)p[0];
float cur_x2 = cur_x1;
/* start-end inclusive */
const int min_y = p[1];
const int max_y_end = max_y + 1;
for (int scanline_y = min_y; scanline_y != max_y_end; scanline_y += 1) {
callback((int)cur_x1, 1 + (int)cur_x2, scanline_y, user_data);
cur_x1 += inv_slope1;
cur_x2 += inv_slope2;
}
}
/**
* <pre>
* *
* / \
* *---*
* </pre>
*/
static void draw_tri_flat_min(const int p[2],
const int min_y,
const float inv_slope1,
const float inv_slope2,
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
float cur_x1 = (float)p[0];
float cur_x2 = cur_x1;
/* start-end inclusive */
const int max_y = p[1];
const int min_y_end = min_y - 1;
for (int scanline_y = max_y; scanline_y != min_y_end; scanline_y -= 1) {
callback((int)cur_x1, 1 + (int)cur_x2, scanline_y, user_data);
cur_x1 -= inv_slope1;
cur_x2 -= inv_slope2;
}
}
void BLI_bitmap_draw_2d_tri_v2i(
/* all 2d */
const int p1[2],
const int p2[2],
const int p3[2],
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
/* At first sort the three vertices by y-coordinate ascending so p1 is the top-most vertex */
ORDER_VARS3_BY(const int *, p1, p2, p3, [1]);
BLI_assert(p1[1] <= p2[1] && p2[1] <= p3[1]);
/* Check for trivial case of bottom-flat triangle. */
if (p2[1] == p3[1]) {
float inv_slope1 = inv_slope(p2, p1);
float inv_slope2 = inv_slope(p3, p1);
ORDER_VARS2(float, inv_slope1, inv_slope2);
BLI_assert(!(inv_slope1 > inv_slope2));
draw_tri_flat_max(p1, p2[1], inv_slope1, inv_slope2, callback, user_data);
}
else if (p1[1] == p2[1]) {
/* Check for trivial case of top-flat triangle. */
float inv_slope1 = inv_slope(p3, p1);
float inv_slope2 = inv_slope(p3, p2);
ORDER_VARS2(float, inv_slope2, inv_slope1);
BLI_assert(!(inv_slope1 < inv_slope2));
draw_tri_flat_min(p3,
p2[1] + 1, /* avoid overlap */
inv_slope1,
inv_slope2,
callback,
user_data);
}
else {
/* General case - split the triangle in a top-flat and bottom-flat one. */
const float inv_slope_p21 = inv_slope(p2, p1);
const float inv_slope_p31 = inv_slope(p3, p1);
const float inv_slope_p32 = inv_slope(p3, p2);
float inv_slope1_max, inv_slope2_max;
float inv_slope2_min, inv_slope1_min;
if (inv_slope_p21 < inv_slope_p31) {
inv_slope1_max = inv_slope_p21;
inv_slope2_max = inv_slope_p31;
inv_slope2_min = inv_slope_p31;
inv_slope1_min = inv_slope_p32;
}
else {
inv_slope1_max = inv_slope_p31;
inv_slope2_max = inv_slope_p21;
inv_slope2_min = inv_slope_p32;
inv_slope1_min = inv_slope_p31;
}
draw_tri_flat_max(p1, p2[1], inv_slope1_max, inv_slope2_max, callback, user_data);
draw_tri_flat_min(p3,
p2[1] + 1, /* avoid overlap */
inv_slope1_min,
inv_slope2_min,
callback,
user_data);
}
}
#undef ORDERED_SWAP
#undef ORDERED_SWAP_BY
#undef ORDER_VARS2
#undef ORDER_VARS3_BY
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Filled Polygon
* \{ */
/* sort edge-segments on y, then x axis */
static int draw_poly_v2i_n__span_y_sort(const void *a_p, const void *b_p, void *verts_p)
{
const int(*verts)[2] = verts_p;
const int *a = a_p;
const int *b = b_p;
const int *co_a = verts[a[0]];
const int *co_b = verts[b[0]];
if (co_a[1] < co_b[1]) {
return -1;
}
if (co_a[1] > co_b[1]) {
return 1;
}
if (co_a[0] < co_b[0]) {
return -1;
}
if (co_a[0] > co_b[0]) {
return 1;
}
/* co_a & co_b are identical, use the line closest to the x-min */
const int *co = co_a;
co_a = verts[a[1]];
co_b = verts[b[1]];
int ord = (((co_b[0] - co[0]) * (co_a[1] - co[1])) - ((co_a[0] - co[0]) * (co_b[1] - co[1])));
if (ord > 0) {
return -1;
}
if (ord < 0) {
return 1;
}
return 0;
}
void BLI_bitmap_draw_2d_poly_v2i_n(const int xmin,
const int ymin,
const int xmax,
const int ymax,
const int verts[][2],
const int verts_len,
void (*callback)(int x, int x_end, int y, void *),
void *user_data)
{
/* Originally by Darel Rex Finley, 2007.
* Optimized by Campbell Barton, 2016 to track sorted intersections. */
int(*span_y)[2] = MEM_mallocN(sizeof(*span_y) * (size_t)verts_len, __func__);
int span_y_len = 0;
for (int i_curr = 0, i_prev = verts_len - 1; i_curr < verts_len; i_prev = i_curr++) {
const int *co_prev = verts[i_prev];
const int *co_curr = verts[i_curr];
if (co_prev[1] != co_curr[1]) {
/* Any segments entirely above or below the area of interest can be skipped. */
if ((min_ii(co_prev[1], co_curr[1]) >= ymax) || (max_ii(co_prev[1], co_curr[1]) < ymin)) {
continue;
}
int *s = span_y[span_y_len++];
if (co_prev[1] < co_curr[1]) {
s[0] = i_prev;
s[1] = i_curr;
}
else {
s[0] = i_curr;
s[1] = i_prev;
}
}
}
BLI_qsort_r(
span_y, (size_t)span_y_len, sizeof(*span_y), draw_poly_v2i_n__span_y_sort, (void *)verts);
struct NodeX {
int span_y_index;
int x;
} *node_x = MEM_mallocN(sizeof(*node_x) * (size_t)(verts_len + 1), __func__);
int node_x_len = 0;
int span_y_index = 0;
if (span_y_len != 0 && verts[span_y[0][0]][1] < ymin) {
while ((span_y_index < span_y_len) && (verts[span_y[span_y_index][0]][1] < ymin)) {
BLI_assert(verts[span_y[span_y_index][0]][1] < verts[span_y[span_y_index][1]][1]);
if (verts[span_y[span_y_index][1]][1] >= ymin) {
struct NodeX *n = &node_x[node_x_len++];
n->span_y_index = span_y_index;
}
span_y_index += 1;
}
}
/* Loop through the rows of the image. */
for (int pixel_y = ymin; pixel_y < ymax; pixel_y++) {
bool is_sorted = true;
bool do_remove = false;
for (int i = 0, x_ix_prev = INT_MIN; i < node_x_len; i++) {
struct NodeX *n = &node_x[i];
const int *s = span_y[n->span_y_index];
const int *co_prev = verts[s[0]];
const int *co_curr = verts[s[1]];
BLI_assert(co_prev[1] < pixel_y && co_curr[1] >= pixel_y);
const double x = (co_prev[0] - co_curr[0]);
const double y = (co_prev[1] - co_curr[1]);
const double y_px = (pixel_y - co_curr[1]);
const int x_ix = (int)((double)co_curr[0] + ((y_px / y) * x));
n->x = x_ix;
if (is_sorted && (x_ix_prev > x_ix)) {
is_sorted = false;
}
if (do_remove == false && co_curr[1] == pixel_y) {
do_remove = true;
}
x_ix_prev = x_ix;
}
/* Sort the nodes, via a simple "Bubble" sort. */
if (is_sorted == false) {
int i = 0;
const int node_x_end = node_x_len - 1;
while (i < node_x_end) {
if (node_x[i].x > node_x[i + 1].x) {
SWAP(struct NodeX, node_x[i], node_x[i + 1]);
if (i != 0) {
i -= 1;
}
}
else {
i += 1;
}
}
}
/* Fill the pixels between node pairs. */
for (int i = 0; i < node_x_len; i += 2) {
int x_src = node_x[i].x;
int x_dst = node_x[i + 1].x;
if (x_src >= xmax) {
break;
}
if (x_dst > xmin) {
if (x_src < xmin) {
x_src = xmin;
}
if (x_dst > xmax) {
x_dst = xmax;
}
/* for single call per x-span */
if (x_src < x_dst) {
callback(x_src - xmin, x_dst - xmin, pixel_y - ymin, user_data);
}
}
}
/* Clear finalized nodes in one pass, only when needed
* (avoids excessive array-resizing). */
if (do_remove == true) {
int i_dst = 0;
for (int i_src = 0; i_src < node_x_len; i_src += 1) {
const int *s = span_y[node_x[i_src].span_y_index];
const int *co = verts[s[1]];
if (co[1] != pixel_y) {
if (i_dst != i_src) {
/* x is initialized for the next pixel_y (no need to adjust here) */
node_x[i_dst].span_y_index = node_x[i_src].span_y_index;
}
i_dst += 1;
}
}
node_x_len = i_dst;
}
/* Scan for new x-nodes */
while ((span_y_index < span_y_len) && (verts[span_y[span_y_index][0]][1] == pixel_y)) {
/* NOTE: node_x these are just added at the end,
* not ideal but sorting once will resolve. */
/* x is initialized for the next pixel_y */
struct NodeX *n = &node_x[node_x_len++];
n->span_y_index = span_y_index;
span_y_index += 1;
}
}
MEM_freeN(span_y);
MEM_freeN(node_x);
}
/** \} */