Files
test/source/blender/freestyle/intern/geometry/Grid.cpp
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

389 lines
11 KiB
C++

/* SPDX-FileCopyrightText: 2008-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup freestyle
* \brief Base class to define a cell grid surrounding the bounding box of the scene
*/
#include <stdexcept>
#include "BBox.h"
#include "Grid.h"
#include "BLI_utildefines.h"
namespace Freestyle {
// Grid Visitors
/////////////////
void allOccludersGridVisitor::examineOccluder(Polygon3r *occ)
{
occluders_.push_back(occ);
}
static bool inBox(const Vec3r &inter, const Vec3r &box_min, const Vec3r &box_max)
{
if (((inter.x() >= box_min.x()) && (inter.x() < box_max.x())) &&
((inter.y() >= box_min.y()) && (inter.y() < box_max.y())) &&
((inter.z() >= box_min.z()) && (inter.z() < box_max.z())))
{
return true;
}
return false;
}
void firstIntersectionGridVisitor::examineOccluder(Polygon3r *occ)
{
// check whether the edge and the polygon plane are coincident:
//-------------------------------------------------------------
// first let us compute the plane equation.
Vec3r v1((occ)->getVertices()[0]);
Vec3d normal((occ)->getNormal());
// soc unused - double d = -(v1 * normal);
double tmp_u, tmp_v, tmp_t;
if ((occ)->rayIntersect(ray_org_, ray_dir_, tmp_t, tmp_u, tmp_v)) {
if (fabs(ray_dir_ * normal) > 0.0001) {
// Check whether the intersection is in the cell:
if (inBox(ray_org_ + tmp_t * ray_dir_ / ray_dir_.norm(),
current_cell_->getOrigin(),
current_cell_->getOrigin() + cell_size_))
{
#if 0
Vec3d bboxdiag(_scene3d->bbox().getMax() - _scene3d->bbox().getMin());
if ((t > 1.0e-06 * (min(min(bboxdiag.x(), bboxdiag.y()), bboxdiag.z()))) &&
(t < raylength)) {
#else
if (tmp_t < t_) {
#endif
occluder_ = occ;
u_ = tmp_u;
v_ = tmp_v;
t_ = tmp_t;
}
}
else {
occ->userdata2 = nullptr;
}
}
}
} // namespace Freestyle
bool firstIntersectionGridVisitor::stop()
{
if (occluder_) {
return true;
}
return false;
}
// Grid
/////////////////
void Grid::clear()
{
if (!_occluders.empty()) {
for (OccludersSet::iterator it = _occluders.begin(); it != _occluders.end(); it++) {
delete (*it);
}
_occluders.clear();
}
_size = Vec3r(0, 0, 0);
_cell_size = Vec3r(0, 0, 0);
_orig = Vec3r(0, 0, 0);
_cells_nb = Vec3u(0, 0, 0);
//_ray_occluders.clear();
}
void Grid::configure(const Vec3r &orig, const Vec3r &size, uint nb)
{
_orig = orig;
Vec3r tmpSize = size;
// Compute the volume of the desired grid
real grid_vol = size[0] * size[1] * size[2];
if (grid_vol == 0) {
double min = DBL_MAX;
int index = 0;
int nzeros = 0;
for (int i = 0; i < 3; ++i) {
if (size[i] == 0) {
++nzeros;
index = i;
}
if ((size[i] != 0) && (min > size[i])) {
min = size[i];
}
}
if (nzeros > 1) {
throw std::runtime_error("Warning: the 3D grid has more than one null dimension");
}
tmpSize[index] = min;
_orig[index] = _orig[index] - min / 2;
}
// Compute the desired volume of a single cell
real cell_vol = grid_vol / nb;
// The edge of such a cubic cell is cubic root of cellVolume
real edge = pow(cell_vol, 1.0 / 3.0);
// We compute the number of cells par edge such as we cover at least the whole box.
uint i;
for (i = 0; i < 3; i++) {
_cells_nb[i] = uint(floor(tmpSize[i] / edge)) + 1;
}
_size = tmpSize;
for (i = 0; i < 3; i++) {
_cell_size[i] = _size[i] / _cells_nb[i];
}
}
void Grid::insertOccluder(Polygon3r *occluder)
{
const vector<Vec3r> vertices = occluder->getVertices();
if (vertices.empty()) {
return;
}
// add this occluder to the grid's occluders list
addOccluder(occluder);
// find the bbox associated to this polygon
Vec3r min, max;
occluder->getBBox(min, max);
// Retrieve the cell x, y, z coordinates associated with these min and max
Vec3u imax, imin;
getCellCoordinates(max, imax);
getCellCoordinates(min, imin);
// We are now going to fill in the cells overlapping with the polygon bbox.
// If the polygon is a triangle (most of cases), we also check for each of these cells if it is
// overlapping with the triangle in order to only fill in the ones really overlapping the
// triangle.
uint i, x, y, z;
vector<Vec3r>::const_iterator it;
Vec3u coord;
if (vertices.size() == 3) { // Triangle case
Vec3r triverts[3];
i = 0;
for (it = vertices.begin(); it != vertices.end(); it++) {
triverts[i] = Vec3r(*it);
i++;
}
Vec3r boxmin, boxmax;
for (z = imin[2]; z <= imax[2]; z++) {
for (y = imin[1]; y <= imax[1]; y++) {
for (x = imin[0]; x <= imax[0]; x++) {
coord[0] = x;
coord[1] = y;
coord[2] = z;
// We retrieve the box coordinates of the current cell
getCellBox(coord, boxmin, boxmax);
// We check whether the triangle and the box ovewrlap:
Vec3r boxcenter((boxmin + boxmax) / 2.0);
Vec3r boxhalfsize(_cell_size / 2.0);
if (GeomUtils::overlapTriangleBox(boxcenter, boxhalfsize, triverts)) {
// We must then create the Cell and add it to the cells list if it does not exist yet.
// We must then add the occluder to the occluders list of this cell.
Cell *cell = getCell(coord);
if (!cell) {
cell = new Cell(boxmin);
fillCell(coord, *cell);
}
cell->addOccluder(occluder);
}
}
}
}
}
else { // The polygon is not a triangle, we add all the cells overlapping the polygon bbox.
for (z = imin[2]; z <= imax[2]; z++) {
for (y = imin[1]; y <= imax[1]; y++) {
for (x = imin[0]; x <= imax[0]; x++) {
coord[0] = x;
coord[1] = y;
coord[2] = z;
Cell *cell = getCell(coord);
if (!cell) {
Vec3r orig;
getCellOrigin(coord, orig);
cell = new Cell(orig);
fillCell(coord, *cell);
}
cell->addOccluder(occluder);
}
}
}
}
}
bool Grid::nextRayCell(Vec3u &current_cell, Vec3u &next_cell)
{
next_cell = current_cell;
real t_min, t;
uint i;
t_min = FLT_MAX; // init tmin with handle of the case where one or 2 _u[i] = 0.
uint coord = 0; // predominant coord(0=x, 1=y, 2=z)
// using a parametric equation of a line : B = A + t u, we find the tx, ty and tz respectively
// corresponding to the intersections with the plans:
// x = _cell_size[0], y = _cell_size[1], z = _cell_size[2]
for (i = 0; i < 3; i++) {
if (_ray_dir[i] == 0) {
continue;
}
if (_ray_dir[i] > 0) {
t = (_cell_size[i] - _pt[i]) / _ray_dir[i];
}
else {
t = -_pt[i] / _ray_dir[i];
}
if (t < t_min) {
t_min = t;
coord = i;
}
}
// We use the parametric line equation and the found t (tamx) to compute the B coordinates:
Vec3r pt_tmp(_pt);
_pt = pt_tmp + t_min * _ray_dir;
// We express B coordinates in the next cell coordinates system. We just have to
// set the coordinate coord of B to 0 of _CellSize[coord] depending on the sign of _u[coord]
if (_ray_dir[coord] > 0) {
next_cell[coord]++;
_pt[coord] -= _cell_size[coord];
// if we are out of the grid, we must stop
if (next_cell[coord] >= _cells_nb[coord]) {
return false;
}
}
else {
int tmp = next_cell[coord] - 1;
_pt[coord] = _cell_size[coord];
if (tmp < 0) {
return false;
}
next_cell[coord]--;
}
_t += t_min;
if (_t >= _t_end) {
return false;
}
return true;
}
void Grid::castRay(const Vec3r &orig, const Vec3r &end, OccludersSet &occluders, uint timestamp)
{
initRay(orig, end, timestamp);
allOccludersGridVisitor visitor(occluders);
castRayInternal(visitor);
}
void Grid::castInfiniteRay(const Vec3r &orig,
const Vec3r &dir,
OccludersSet &occluders,
uint timestamp)
{
Vec3r end = Vec3r(orig + FLT_MAX * dir / dir.norm());
bool inter = initInfiniteRay(orig, dir, timestamp);
if (!inter) {
return;
}
allOccludersGridVisitor visitor(occluders);
castRayInternal(visitor);
}
Polygon3r *Grid::castRayToFindFirstIntersection(
const Vec3r &orig, const Vec3r &dir, double &t, double &u, double &v, uint timestamp)
{
Polygon3r *occluder = nullptr;
Vec3r end = Vec3r(orig + FLT_MAX * dir / dir.norm());
bool inter = initInfiniteRay(orig, dir, timestamp);
if (!inter) {
return nullptr;
}
firstIntersectionGridVisitor visitor(orig, dir, _cell_size);
castRayInternal(visitor);
// ARB: This doesn't work, because occluders are unordered within any cell
// visitor.occluder() will be an occluder, but we have no guarantee it will be the *first*
// occluder. I assume that is the reason this code is not actually used for FindOccludee.
occluder = visitor.occluder();
t = visitor.t_;
u = visitor.u_;
v = visitor.v_;
return occluder;
}
void Grid::initRay(const Vec3r &orig, const Vec3r &end, uint timestamp)
{
_ray_dir = end - orig;
_t_end = _ray_dir.norm();
_t = 0;
_ray_dir.normalize();
_timestamp = timestamp;
for (uint i = 0; i < 3; i++) {
_current_cell[i] = uint(floor((orig[i] - _orig[i]) / _cell_size[i]));
// soc unused - uint u = _current_cell[i];
_pt[i] = orig[i] - _orig[i] - _current_cell[i] * _cell_size[i];
}
//_ray_occluders.clear();
}
bool Grid::initInfiniteRay(const Vec3r &orig, const Vec3r &dir, uint timestamp)
{
_ray_dir = dir;
_t_end = FLT_MAX;
_t = 0;
_ray_dir.normalize();
_timestamp = timestamp;
// check whether the origin is in or out the box:
Vec3r boxMin(_orig);
Vec3r boxMax(_orig + _size);
BBox<Vec3r> box(boxMin, boxMax);
if (box.inside(orig)) {
for (uint i = 0; i < 3; i++) {
_current_cell[i] = uint(floor((orig[i] - _orig[i]) / _cell_size[i]));
// soc unused - uint u = _current_cell[i];
_pt[i] = orig[i] - _orig[i] - _current_cell[i] * _cell_size[i];
}
}
else {
// is the ray intersecting the box?
real tmin(-1.0), tmax(-1.0);
if (GeomUtils::intersectRayBBox(orig, _ray_dir, boxMin, boxMax, 0, _t_end, tmin, tmax)) {
BLI_assert(tmin != -1.0);
Vec3r newOrig = orig + tmin * _ray_dir;
for (uint i = 0; i < 3; i++) {
_current_cell[i] = uint(floor((newOrig[i] - _orig[i]) / _cell_size[i]));
if (_current_cell[i] == _cells_nb[i]) {
_current_cell[i] = _cells_nb[i] - 1;
}
// soc unused - uint u = _current_cell[i];
_pt[i] = newOrig[i] - _orig[i] - _current_cell[i] * _cell_size[i];
}
}
else {
return false;
}
}
//_ray_occluders.clear();
return true;
}
} /* namespace Freestyle */