Files
test2/source/blender/editors/space_node/node_view.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

793 lines
21 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2008 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup spnode
2011-02-27 20:29:51 +00:00
*/
#include "DNA_node_types.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_string_ref.hh"
#include "BLI_utildefines.h"
#include "BKE_context.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "BKE_node.h"
#include "BKE_screen.h"
#include "ED_image.h"
#include "ED_node.h" /* own include */
#include "ED_screen.h"
#include "ED_space_api.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "WM_api.h"
#include "WM_types.h"
#include "UI_view2d.h"
#include "MEM_guardedalloc.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "node_intern.h" /* own include */
using blender::StringRef;
/* -------------------------------------------------------------------- */
/** \name View All Operator
* \{ */
int space_node_view_flag(
bContext *C, SpaceNode *snode, ARegion *region, const int node_flag, const int smooth_viewtx)
{
bNode *node;
2012-08-07 16:30:34 +00:00
rctf cur_new;
float oldwidth, oldheight, width, height;
float oldasp, asp;
int tot = 0;
bool has_frame = false;
oldwidth = BLI_rctf_size_x(&region->v2d.cur);
oldheight = BLI_rctf_size_y(&region->v2d.cur);
oldasp = oldwidth / oldheight;
2012-08-07 16:30:34 +00:00
BLI_rctf_init_minmax(&cur_new);
if (snode->edittree) {
for (node = (bNode *)snode->edittree->nodes.first; node; node = node->next) {
2012-08-07 16:30:34 +00:00
if ((node->flag & node_flag) == node_flag) {
BLI_rctf_union(&cur_new, &node->totr);
tot++;
if (node->type == NODE_FRAME) {
has_frame = true;
}
}
}
}
if (tot) {
width = BLI_rctf_size_x(&cur_new);
height = BLI_rctf_size_y(&cur_new);
asp = width / height;
/* for single non-frame nodes, don't zoom in, just pan view,
* but do allow zooming out, this allows for big nodes to be zoomed out */
if ((tot == 1) && (has_frame == false) && ((oldwidth * oldheight) > (width * height))) {
/* center, don't zoom */
BLI_rctf_resize(&cur_new, oldwidth, oldheight);
2012-08-07 16:30:34 +00:00
}
else {
if (oldasp < asp) {
const float height_new = width / oldasp;
cur_new.ymin = cur_new.ymin - height_new / 2.0f;
cur_new.ymax = cur_new.ymax + height_new / 2.0f;
}
else {
const float width_new = height * oldasp;
cur_new.xmin = cur_new.xmin - width_new / 2.0f;
cur_new.xmax = cur_new.xmax + width_new / 2.0f;
}
/* add some padding */
BLI_rctf_scale(&cur_new, 1.1f);
2012-08-07 16:30:34 +00:00
}
UI_view2d_smooth_view(C, region, &cur_new, smooth_viewtx);
}
return (tot != 0);
}
static int node_view_all_exec(bContext *C, wmOperator *op)
{
ARegion *region = CTX_wm_region(C);
2012-08-04 12:54:27 +00:00
SpaceNode *snode = CTX_wm_space_node(C);
const int smooth_viewtx = WM_operator_smooth_viewtx_get(op);
/* is this really needed? */
snode->xof = 0;
snode->yof = 0;
if (space_node_view_flag(C, snode, region, 0, smooth_viewtx)) {
2012-08-07 16:30:34 +00:00
return OPERATOR_FINISHED;
}
return OPERATOR_CANCELLED;
}
void NODE_OT_view_all(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Frame All";
ot->idname = "NODE_OT_view_all";
ot->description = "Resize view so you can see all nodes";
/* api callbacks */
ot->exec = node_view_all_exec;
ot->poll = ED_operator_node_active;
/* flags */
ot->flag = 0;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name View Selected Operator
* \{ */
static int node_view_selected_exec(bContext *C, wmOperator *op)
2012-08-07 16:30:34 +00:00
{
ARegion *region = CTX_wm_region(C);
2012-08-07 16:30:34 +00:00
SpaceNode *snode = CTX_wm_space_node(C);
const int smooth_viewtx = WM_operator_smooth_viewtx_get(op);
if (space_node_view_flag(C, snode, region, NODE_SELECT, smooth_viewtx)) {
2012-08-07 16:30:34 +00:00
return OPERATOR_FINISHED;
}
return OPERATOR_CANCELLED;
2012-08-07 16:30:34 +00:00
}
void NODE_OT_view_selected(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Frame Selected";
2012-08-07 16:30:34 +00:00
ot->idname = "NODE_OT_view_selected";
ot->description = "Resize view so you can see selected nodes";
/* api callbacks */
ot->exec = node_view_selected_exec;
ot->poll = ED_operator_node_active;
/* flags */
ot->flag = 0;
2012-08-07 16:30:34 +00:00
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Background Image Operators
* \{ */
struct NodeViewMove {
int mvalo[2];
int xmin, ymin, xmax, ymax;
};
static int snode_bg_viewmove_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
SpaceNode *snode = CTX_wm_space_node(C);
ARegion *region = CTX_wm_region(C);
NodeViewMove *nvm = (NodeViewMove *)op->customdata;
switch (event->type) {
case MOUSEMOVE:
snode->xof -= (nvm->mvalo[0] - event->mval[0]);
snode->yof -= (nvm->mvalo[1] - event->mval[1]);
nvm->mvalo[0] = event->mval[0];
nvm->mvalo[1] = event->mval[1];
/* prevent dragging image outside of the window and losing it! */
CLAMP(snode->xof, nvm->xmin, nvm->xmax);
CLAMP(snode->yof, nvm->ymin, nvm->ymax);
ED_region_tag_redraw(region);
WM_main_add_notifier(NC_NODE | ND_DISPLAY, nullptr);
WM_main_add_notifier(NC_SPACE | ND_SPACE_NODE_VIEW, nullptr);
break;
case LEFTMOUSE:
case MIDDLEMOUSE:
case RIGHTMOUSE:
2018-06-08 18:52:00 +02:00
if (event->val == KM_RELEASE) {
MEM_freeN(nvm);
op->customdata = nullptr;
2018-06-08 18:52:00 +02:00
return OPERATOR_FINISHED;
}
break;
}
return OPERATOR_RUNNING_MODAL;
}
static int snode_bg_viewmove_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
Main *bmain = CTX_data_main(C);
SpaceNode *snode = CTX_wm_space_node(C);
ARegion *region = CTX_wm_region(C);
NodeViewMove *nvm;
Image *ima;
ImBuf *ibuf;
const float pad = 32.0f; /* better be bigger than scrollbars */
void *lock;
ima = BKE_image_ensure_viewer(bmain, IMA_TYPE_COMPOSITE, "Viewer Node");
ibuf = BKE_image_acquire_ibuf(ima, nullptr, &lock);
if (ibuf == nullptr) {
BKE_image_release_ibuf(ima, ibuf, lock);
return OPERATOR_CANCELLED;
}
nvm = (NodeViewMove *)MEM_callocN(sizeof(NodeViewMove), "NodeViewMove struct");
op->customdata = nvm;
nvm->mvalo[0] = event->mval[0];
nvm->mvalo[1] = event->mval[1];
nvm->xmin = -(region->winx / 2) - (ibuf->x * (0.5f * snode->zoom)) + pad;
nvm->xmax = (region->winx / 2) + (ibuf->x * (0.5f * snode->zoom)) - pad;
nvm->ymin = -(region->winy / 2) - (ibuf->y * (0.5f * snode->zoom)) + pad;
nvm->ymax = (region->winy / 2) + (ibuf->y * (0.5f * snode->zoom)) - pad;
BKE_image_release_ibuf(ima, ibuf, lock);
/* add modal handler */
WM_event_add_modal_handler(C, op);
return OPERATOR_RUNNING_MODAL;
}
static void snode_bg_viewmove_cancel(bContext *UNUSED(C), wmOperator *op)
{
MEM_freeN(op->customdata);
op->customdata = nullptr;
}
void NODE_OT_backimage_move(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Background Image Move";
ot->description = "Move node backdrop";
ot->idname = "NODE_OT_backimage_move";
/* api callbacks */
ot->invoke = snode_bg_viewmove_invoke;
ot->modal = snode_bg_viewmove_modal;
ot->poll = composite_node_active;
ot->cancel = snode_bg_viewmove_cancel;
/* flags */
ot->flag = OPTYPE_BLOCKING | OPTYPE_GRAB_CURSOR_XY;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Background Image Zoom
* \{ */
static int backimage_zoom_exec(bContext *C, wmOperator *op)
{
SpaceNode *snode = CTX_wm_space_node(C);
ARegion *region = CTX_wm_region(C);
float fac = RNA_float_get(op->ptr, "factor");
snode->zoom *= fac;
ED_region_tag_redraw(region);
WM_main_add_notifier(NC_NODE | ND_DISPLAY, nullptr);
WM_main_add_notifier(NC_SPACE | ND_SPACE_NODE_VIEW, nullptr);
return OPERATOR_FINISHED;
}
void NODE_OT_backimage_zoom(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Background Image Zoom";
ot->idname = "NODE_OT_backimage_zoom";
ot->description = "Zoom in/out the background image";
/* api callbacks */
ot->exec = backimage_zoom_exec;
ot->poll = composite_node_active;
/* flags */
ot->flag = OPTYPE_BLOCKING;
/* internal */
RNA_def_float(ot->srna, "factor", 1.2f, 0.0f, 10.0f, "Factor", "", 0.0f, 10.0f);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Background Image Fit
* \{ */
2013-09-01 15:01:03 +00:00
static int backimage_fit_exec(bContext *C, wmOperator *UNUSED(op))
{
Main *bmain = CTX_data_main(C);
SpaceNode *snode = CTX_wm_space_node(C);
ARegion *region = CTX_wm_region(C);
Image *ima;
ImBuf *ibuf;
const float pad = 32.0f;
void *lock;
float facx, facy;
ima = BKE_image_ensure_viewer(bmain, IMA_TYPE_COMPOSITE, "Viewer Node");
ibuf = BKE_image_acquire_ibuf(ima, nullptr, &lock);
if ((ibuf == nullptr) || (ibuf->x == 0) || (ibuf->y == 0)) {
BKE_image_release_ibuf(ima, ibuf, lock);
return OPERATOR_CANCELLED;
}
facx = 1.0f * (region->sizex - pad) / (ibuf->x * snode->zoom);
facy = 1.0f * (region->sizey - pad) / (ibuf->y * snode->zoom);
BKE_image_release_ibuf(ima, ibuf, lock);
snode->zoom *= min_ff(facx, facy) * U.dpi_fac;
snode->xof = 0;
snode->yof = 0;
ED_region_tag_redraw(region);
WM_main_add_notifier(NC_NODE | ND_DISPLAY, nullptr);
WM_main_add_notifier(NC_SPACE | ND_SPACE_NODE_VIEW, nullptr);
return OPERATOR_FINISHED;
}
void NODE_OT_backimage_fit(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Background Image Fit";
ot->idname = "NODE_OT_backimage_fit";
ot->description = "Fit the background image to the view";
/* api callbacks */
ot->exec = backimage_fit_exec;
ot->poll = composite_node_active;
/* flags */
ot->flag = OPTYPE_BLOCKING;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sample Backdrop Operator
* \{ */
struct ImageSampleInfo {
ARegionType *art;
void *draw_handle;
int x, y;
int channels;
uchar col[4];
float colf[4];
float linearcol[4];
int z;
float zf;
int *zp;
float *zfp;
int draw;
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
int color_manage;
};
static void sample_draw(const bContext *C, ARegion *region, void *arg_info)
{
Scene *scene = CTX_data_scene(C);
ImageSampleInfo *info = (ImageSampleInfo *)arg_info;
if (info->draw) {
ED_image_draw_info(scene,
region,
info->color_manage,
false,
info->channels,
info->x,
info->y,
info->col,
info->colf,
info->linearcol,
info->zp,
info->zfp);
}
}
Compositor: Redesign Cryptomatte node for better usability In the current implementation, cryptomatte passes are connected to the node and elements are picked by using the eyedropper tool on a special pick channel. This design has two disadvantages - both connecting all passes individually and always having to switch to the picker channel are tedious. With the new design, the user selects the RenderLayer or Image from which the Cryptomatte layers are directly loaded (the type of pass is determined by an enum). This allows the node to automatically detect all relevant passes. Then, when using the eyedropper tool, the operator looks up the selected coordinates from the picked Image, Node backdrop or Clip and reads the picked object directly from the Renderlayer/Image, therefore allowing to pick in any context (e.g. by clicking on the Combined pass in the Image Viewer). The sampled color is looked up in the metadata and the actual name is stored in the cryptomatte node. This also allows to remove a hash by just removing the name from the matte id. Technically there is some loss of flexibility because the Cryptomatte pass inputs can no longer be connected to other nodes, but since any compositing done on them is likely to break the Cryptomatte system anyways, this isn't really a concern in practise. In the future, this would also allow to automatically translate values to names by looking up the value in the associated metadata of the input, or to get a better visualization of overlapping areas in the Pick output since we could blend colors now that the output doesn't have to contain the exact value. Idea + Original patch: Lucas Stockner Reviewed By: Brecht van Lommel Differential Revision: https://developer.blender.org/D3959
2021-03-16 07:37:30 +01:00
/* Returns mouse position in image space. */
bool ED_space_node_get_position(
Main *bmain, SpaceNode *snode, struct ARegion *region, const int mval[2], float fpos[2])
Compositor: Redesign Cryptomatte node for better usability In the current implementation, cryptomatte passes are connected to the node and elements are picked by using the eyedropper tool on a special pick channel. This design has two disadvantages - both connecting all passes individually and always having to switch to the picker channel are tedious. With the new design, the user selects the RenderLayer or Image from which the Cryptomatte layers are directly loaded (the type of pass is determined by an enum). This allows the node to automatically detect all relevant passes. Then, when using the eyedropper tool, the operator looks up the selected coordinates from the picked Image, Node backdrop or Clip and reads the picked object directly from the Renderlayer/Image, therefore allowing to pick in any context (e.g. by clicking on the Combined pass in the Image Viewer). The sampled color is looked up in the metadata and the actual name is stored in the cryptomatte node. This also allows to remove a hash by just removing the name from the matte id. Technically there is some loss of flexibility because the Cryptomatte pass inputs can no longer be connected to other nodes, but since any compositing done on them is likely to break the Cryptomatte system anyways, this isn't really a concern in practise. In the future, this would also allow to automatically translate values to names by looking up the value in the associated metadata of the input, or to get a better visualization of overlapping areas in the Pick output since we could blend colors now that the output doesn't have to contain the exact value. Idea + Original patch: Lucas Stockner Reviewed By: Brecht van Lommel Differential Revision: https://developer.blender.org/D3959
2021-03-16 07:37:30 +01:00
{
if (!ED_node_is_compositor(snode) || (snode->flag & SNODE_BACKDRAW) == 0) {
return false;
}
void *lock;
Image *ima = BKE_image_ensure_viewer(bmain, IMA_TYPE_COMPOSITE, "Viewer Node");
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, nullptr, &lock);
Compositor: Redesign Cryptomatte node for better usability In the current implementation, cryptomatte passes are connected to the node and elements are picked by using the eyedropper tool on a special pick channel. This design has two disadvantages - both connecting all passes individually and always having to switch to the picker channel are tedious. With the new design, the user selects the RenderLayer or Image from which the Cryptomatte layers are directly loaded (the type of pass is determined by an enum). This allows the node to automatically detect all relevant passes. Then, when using the eyedropper tool, the operator looks up the selected coordinates from the picked Image, Node backdrop or Clip and reads the picked object directly from the Renderlayer/Image, therefore allowing to pick in any context (e.g. by clicking on the Combined pass in the Image Viewer). The sampled color is looked up in the metadata and the actual name is stored in the cryptomatte node. This also allows to remove a hash by just removing the name from the matte id. Technically there is some loss of flexibility because the Cryptomatte pass inputs can no longer be connected to other nodes, but since any compositing done on them is likely to break the Cryptomatte system anyways, this isn't really a concern in practise. In the future, this would also allow to automatically translate values to names by looking up the value in the associated metadata of the input, or to get a better visualization of overlapping areas in the Pick output since we could blend colors now that the output doesn't have to contain the exact value. Idea + Original patch: Lucas Stockner Reviewed By: Brecht van Lommel Differential Revision: https://developer.blender.org/D3959
2021-03-16 07:37:30 +01:00
if (!ibuf) {
BKE_image_release_ibuf(ima, ibuf, lock);
return false;
}
/* map the mouse coords to the backdrop image space */
float bufx = ibuf->x * snode->zoom;
float bufy = ibuf->y * snode->zoom;
fpos[0] = (bufx > 0.0f ? ((float)mval[0] - 0.5f * region->winx - snode->xof) / bufx + 0.5f :
0.0f);
fpos[1] = (bufy > 0.0f ? ((float)mval[1] - 0.5f * region->winy - snode->yof) / bufy + 0.5f :
0.0f);
Compositor: Redesign Cryptomatte node for better usability In the current implementation, cryptomatte passes are connected to the node and elements are picked by using the eyedropper tool on a special pick channel. This design has two disadvantages - both connecting all passes individually and always having to switch to the picker channel are tedious. With the new design, the user selects the RenderLayer or Image from which the Cryptomatte layers are directly loaded (the type of pass is determined by an enum). This allows the node to automatically detect all relevant passes. Then, when using the eyedropper tool, the operator looks up the selected coordinates from the picked Image, Node backdrop or Clip and reads the picked object directly from the Renderlayer/Image, therefore allowing to pick in any context (e.g. by clicking on the Combined pass in the Image Viewer). The sampled color is looked up in the metadata and the actual name is stored in the cryptomatte node. This also allows to remove a hash by just removing the name from the matte id. Technically there is some loss of flexibility because the Cryptomatte pass inputs can no longer be connected to other nodes, but since any compositing done on them is likely to break the Cryptomatte system anyways, this isn't really a concern in practise. In the future, this would also allow to automatically translate values to names by looking up the value in the associated metadata of the input, or to get a better visualization of overlapping areas in the Pick output since we could blend colors now that the output doesn't have to contain the exact value. Idea + Original patch: Lucas Stockner Reviewed By: Brecht van Lommel Differential Revision: https://developer.blender.org/D3959
2021-03-16 07:37:30 +01:00
BKE_image_release_ibuf(ima, ibuf, lock);
return true;
}
/* Returns color in linear space, matching ED_space_image_color_sample().
* And here we've got recursion in the comments tips...
*/
bool ED_space_node_color_sample(
Main *bmain, SpaceNode *snode, ARegion *region, const int mval[2], float r_col[3])
{
void *lock;
Image *ima;
ImBuf *ibuf;
float fx, fy, bufx, bufy;
2014-04-11 11:25:41 +10:00
bool ret = false;
if (!ED_node_is_compositor(snode) || (snode->flag & SNODE_BACKDRAW) == 0) {
/* use viewer image for color sampling only if we're in compositor tree
* with backdrop enabled
*/
return false;
}
ima = BKE_image_ensure_viewer(bmain, IMA_TYPE_COMPOSITE, "Viewer Node");
ibuf = BKE_image_acquire_ibuf(ima, nullptr, &lock);
if (!ibuf) {
return false;
}
/* map the mouse coords to the backdrop image space */
bufx = ibuf->x * snode->zoom;
bufy = ibuf->y * snode->zoom;
fx = (bufx > 0.0f ? ((float)mval[0] - 0.5f * region->winx - snode->xof) / bufx + 0.5f : 0.0f);
fy = (bufy > 0.0f ? ((float)mval[1] - 0.5f * region->winy - snode->yof) / bufy + 0.5f : 0.0f);
if (fx >= 0.0f && fy >= 0.0f && fx < 1.0f && fy < 1.0f) {
const float *fp;
uchar *cp;
int x = (int)(fx * ibuf->x), y = (int)(fy * ibuf->y);
CLAMP(x, 0, ibuf->x - 1);
CLAMP(y, 0, ibuf->y - 1);
if (ibuf->rect_float) {
fp = (ibuf->rect_float + (ibuf->channels) * (y * ibuf->x + x));
2020-07-21 15:58:16 +10:00
/* #IB_PROFILE_NONE is default but in fact its linear. */
copy_v3_v3(r_col, fp);
ret = true;
}
else if (ibuf->rect) {
cp = (uchar *)(ibuf->rect + y * ibuf->x + x);
rgb_uchar_to_float(r_col, cp);
IMB_colormanagement_colorspace_to_scene_linear_v3(r_col, ibuf->rect_colorspace);
ret = true;
}
}
BKE_image_release_ibuf(ima, ibuf, lock);
return ret;
}
static void sample_apply(bContext *C, wmOperator *op, const wmEvent *event)
{
Main *bmain = CTX_data_main(C);
SpaceNode *snode = CTX_wm_space_node(C);
ARegion *region = CTX_wm_region(C);
ImageSampleInfo *info = (ImageSampleInfo *)op->customdata;
void *lock;
Image *ima;
ImBuf *ibuf;
float fx, fy, bufx, bufy;
ima = BKE_image_ensure_viewer(bmain, IMA_TYPE_COMPOSITE, "Viewer Node");
ibuf = BKE_image_acquire_ibuf(ima, nullptr, &lock);
if (!ibuf) {
info->draw = 0;
return;
}
if (!ibuf->rect) {
IMB_rect_from_float(ibuf);
}
/* map the mouse coords to the backdrop image space */
bufx = ibuf->x * snode->zoom;
bufy = ibuf->y * snode->zoom;
fx = (bufx > 0.0f ? ((float)event->mval[0] - 0.5f * region->winx - snode->xof) / bufx + 0.5f :
0.0f);
fy = (bufy > 0.0f ? ((float)event->mval[1] - 0.5f * region->winy - snode->yof) / bufy + 0.5f :
0.0f);
if (fx >= 0.0f && fy >= 0.0f && fx < 1.0f && fy < 1.0f) {
const float *fp;
uchar *cp;
int x = (int)(fx * ibuf->x), y = (int)(fy * ibuf->y);
CLAMP(x, 0, ibuf->x - 1);
CLAMP(y, 0, ibuf->y - 1);
info->x = x;
info->y = y;
info->draw = 1;
info->channels = ibuf->channels;
info->zp = nullptr;
info->zfp = nullptr;
if (ibuf->rect) {
cp = (uchar *)(ibuf->rect + y * ibuf->x + x);
info->col[0] = cp[0];
info->col[1] = cp[1];
info->col[2] = cp[2];
info->col[3] = cp[3];
info->colf[0] = (float)cp[0] / 255.0f;
info->colf[1] = (float)cp[1] / 255.0f;
info->colf[2] = (float)cp[2] / 255.0f;
info->colf[3] = (float)cp[3] / 255.0f;
copy_v4_v4(info->linearcol, info->colf);
IMB_colormanagement_colorspace_to_scene_linear_v4(
info->linearcol, false, ibuf->rect_colorspace);
info->color_manage = true;
}
if (ibuf->rect_float) {
fp = (ibuf->rect_float + (ibuf->channels) * (y * ibuf->x + x));
info->colf[0] = fp[0];
info->colf[1] = fp[1];
info->colf[2] = fp[2];
info->colf[3] = fp[3];
info->color_manage = true;
}
if (ibuf->zbuf) {
info->z = ibuf->zbuf[y * ibuf->x + x];
info->zp = &info->z;
}
if (ibuf->zbuf_float) {
info->zf = ibuf->zbuf_float[y * ibuf->x + x];
info->zfp = &info->zf;
}
ED_node_sample_set(info->colf);
}
else {
info->draw = 0;
ED_node_sample_set(nullptr);
}
BKE_image_release_ibuf(ima, ibuf, lock);
ED_area_tag_redraw(CTX_wm_area(C));
}
static void sample_exit(bContext *C, wmOperator *op)
{
ImageSampleInfo *info = (ImageSampleInfo *)op->customdata;
ED_node_sample_set(nullptr);
ED_region_draw_cb_exit(info->art, info->draw_handle);
ED_area_tag_redraw(CTX_wm_area(C));
MEM_freeN(info);
}
static int sample_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
SpaceNode *snode = CTX_wm_space_node(C);
ARegion *region = CTX_wm_region(C);
ImageSampleInfo *info;
if (!ED_node_is_compositor(snode) || !(snode->flag & SNODE_BACKDRAW)) {
return OPERATOR_CANCELLED;
}
info = (ImageSampleInfo *)MEM_callocN(sizeof(ImageSampleInfo), "ImageSampleInfo");
info->art = region->type;
info->draw_handle = ED_region_draw_cb_activate(
region->type, sample_draw, info, REGION_DRAW_POST_PIXEL);
op->customdata = info;
sample_apply(C, op, event);
WM_event_add_modal_handler(C, op);
return OPERATOR_RUNNING_MODAL;
}
static int sample_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
switch (event->type) {
case LEFTMOUSE:
case RIGHTMOUSE: /* XXX hardcoded */
if (event->val == KM_RELEASE) {
sample_exit(C, op);
return OPERATOR_CANCELLED;
}
break;
case MOUSEMOVE:
sample_apply(C, op, event);
break;
}
return OPERATOR_RUNNING_MODAL;
}
static void sample_cancel(bContext *C, wmOperator *op)
{
sample_exit(C, op);
}
void NODE_OT_backimage_sample(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Backimage Sample";
ot->idname = "NODE_OT_backimage_sample";
ot->description = "Use mouse to sample background image";
/* api callbacks */
ot->invoke = sample_invoke;
ot->modal = sample_modal;
ot->cancel = sample_cancel;
ot->poll = ED_operator_node_active;
/* flags */
ot->flag = OPTYPE_BLOCKING;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name View Geometry Nodes Legacy Operator
*
* This operator should be removed when the 2.93 legacy nodes are removed.
* \{ */
static int space_node_view_geometry_nodes_legacy(bContext *C, SpaceNode *snode, wmOperator *op)
{
ARegion *region = CTX_wm_region(C);
/* Only use the node editor's active node tree. Otherwise this will be too complicated. */
bNodeTree *node_tree = snode->nodetree;
if (node_tree == nullptr || node_tree->type != NTREE_GEOMETRY) {
return OPERATOR_CANCELLED;
}
bool found_legacy_node = false;
LISTBASE_FOREACH_BACKWARD (bNode *, node, &node_tree->nodes) {
StringRef idname{node->idname};
if (idname.find("Legacy") == StringRef::not_found) {
node->flag &= ~NODE_SELECT;
}
else {
found_legacy_node = true;
node->flag |= NODE_SELECT;
}
}
if (!found_legacy_node) {
WM_report(RPT_INFO, "Legacy node not found, may be in nested node group");
}
const int smooth_viewtx = WM_operator_smooth_viewtx_get(op);
if (space_node_view_flag(C, snode, region, NODE_SELECT, smooth_viewtx)) {
return OPERATOR_FINISHED;
}
return OPERATOR_CANCELLED;
}
static int geometry_node_view_legacy_exec(bContext *C, wmOperator *op)
{
/* Allow running this operator directly in a specific node editor. */
if (SpaceNode *snode = CTX_wm_space_node(C)) {
return space_node_view_geometry_nodes_legacy(C, snode, op);
}
/* Since the operator is meant to be called from a button in the modifier panel, the node tree
* must be found from the screen, using the largest node editor if there is more than one. */
if (ScrArea *area = BKE_screen_find_big_area(CTX_wm_screen(C), SPACE_NODE, 0)) {
if (SpaceNode *snode = static_cast<SpaceNode *>(area->spacedata.first)) {
ScrArea *old_area = CTX_wm_area(C);
ARegion *old_region = CTX_wm_region(C);
/* Override the context since it is used by the View2D panning code. */
CTX_wm_area_set(C, area);
CTX_wm_region_set(C, static_cast<ARegion *>(area->regionbase.last));
const int result = space_node_view_geometry_nodes_legacy(C, snode, op);
CTX_wm_area_set(C, old_area);
CTX_wm_region_set(C, old_region);
return result;
}
}
return OPERATOR_CANCELLED;
}
static bool geometry_node_view_legacy_poll(bContext *C)
{
/* Allow direct execution in a node editor, but also affecting any visible node editor. */
return ED_operator_node_active(C) || BKE_screen_find_big_area(CTX_wm_screen(C), SPACE_NODE, 0);
}
void NODE_OT_geometry_node_view_legacy(wmOperatorType *ot)
{
ot->name = "View Deprecated Geometry Nodes";
ot->idname = "NODE_OT_geometry_node_view_legacy";
ot->description = "Select and view legacy geometry nodes in the node editor";
ot->exec = geometry_node_view_legacy_exec;
ot->poll = geometry_node_view_legacy_poll;
ot->flag = OPTYPE_INTERNAL;
}
/** \} */