Files
test2/intern/cycles/scene/camera.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1003 lines
34 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include <algorithm>
#include "scene/camera.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/osl.h"
#include "scene/scene.h"
#include "scene/stats.h"
#include "scene/tables.h"
#include "device/device.h"
#include "util/log.h"
#include "util/math_cdf.h"
#include "util/tbb.h"
#include "util/time.h"
#include "util/vector.h"
#include "kernel/camera/camera.h"
CCL_NAMESPACE_BEGIN
static float shutter_curve_eval(float x, array<float> &shutter_curve)
{
2016-10-24 12:26:12 +02:00
if (shutter_curve.size() == 0) {
return 1.0f;
2016-10-24 12:26:12 +02:00
}
x = saturatef(x) * shutter_curve.size() - 1;
const int index = (int)x;
const float frac = x - index;
if (index < shutter_curve.size() - 1) {
return mix(shutter_curve[index], shutter_curve[index + 1], frac);
}
return shutter_curve[shutter_curve.size() - 1];
}
NODE_DEFINE(Camera)
{
NodeType *type = NodeType::add("camera", create);
SOCKET_FLOAT(shuttertime, "Shutter Time", 1.0f);
static NodeEnum motion_position_enum;
motion_position_enum.insert("start", MOTION_POSITION_START);
motion_position_enum.insert("center", MOTION_POSITION_CENTER);
motion_position_enum.insert("end", MOTION_POSITION_END);
SOCKET_ENUM(motion_position, "Motion Position", motion_position_enum, MOTION_POSITION_CENTER);
static NodeEnum rolling_shutter_type_enum;
rolling_shutter_type_enum.insert("none", ROLLING_SHUTTER_NONE);
rolling_shutter_type_enum.insert("top", ROLLING_SHUTTER_TOP);
SOCKET_ENUM(rolling_shutter_type,
"Rolling Shutter Type",
rolling_shutter_type_enum,
ROLLING_SHUTTER_NONE);
SOCKET_FLOAT(rolling_shutter_duration, "Rolling Shutter Duration", 0.1f);
SOCKET_FLOAT_ARRAY(shutter_curve, "Shutter Curve", array<float>());
SOCKET_FLOAT(aperturesize, "Aperture Size", 0.0f);
SOCKET_FLOAT(focaldistance, "Focal Distance", 10.0f);
SOCKET_UINT(blades, "Blades", 0);
SOCKET_FLOAT(bladesrotation, "Blades Rotation", 0.0f);
SOCKET_TRANSFORM(matrix, "Matrix", transform_identity());
SOCKET_TRANSFORM_ARRAY(motion, "Motion", array<Transform>());
SOCKET_FLOAT(aperture_ratio, "Aperture Ratio", 1.0f);
static NodeEnum type_enum;
type_enum.insert("perspective", CAMERA_PERSPECTIVE);
type_enum.insert("orthograph", CAMERA_ORTHOGRAPHIC);
type_enum.insert("panorama", CAMERA_PANORAMA);
type_enum.insert("custom", CAMERA_CUSTOM);
SOCKET_ENUM(camera_type, "Type", type_enum, CAMERA_PERSPECTIVE);
static NodeEnum panorama_type_enum;
panorama_type_enum.insert("equirectangular", PANORAMA_EQUIRECTANGULAR);
panorama_type_enum.insert("equiangular_cubemap_face", PANORAMA_EQUIANGULAR_CUBEMAP_FACE);
panorama_type_enum.insert("mirrorball", PANORAMA_MIRRORBALL);
panorama_type_enum.insert("fisheye_equidistant", PANORAMA_FISHEYE_EQUIDISTANT);
panorama_type_enum.insert("fisheye_equisolid", PANORAMA_FISHEYE_EQUISOLID);
panorama_type_enum.insert("fisheye_lens_polynomial", PANORAMA_FISHEYE_LENS_POLYNOMIAL);
panorama_type_enum.insert("panorama_central_cylindrical", PANORAMA_CENTRAL_CYLINDRICAL);
SOCKET_ENUM(panorama_type, "Panorama Type", panorama_type_enum, PANORAMA_EQUIRECTANGULAR);
SOCKET_FLOAT(fisheye_fov, "Fisheye FOV", M_PI_F);
SOCKET_FLOAT(fisheye_lens, "Fisheye Lens", 10.5f);
SOCKET_FLOAT(latitude_min, "Latitude Min", -M_PI_2_F);
SOCKET_FLOAT(latitude_max, "Latitude Max", M_PI_2_F);
SOCKET_FLOAT(longitude_min, "Longitude Min", -M_PI_F);
SOCKET_FLOAT(longitude_max, "Longitude Max", M_PI_F);
SOCKET_FLOAT(fov, "FOV", M_PI_4_F);
SOCKET_FLOAT(fov_pre, "FOV Pre", M_PI_4_F);
SOCKET_FLOAT(fov_post, "FOV Post", M_PI_4_F);
SOCKET_FLOAT(fisheye_polynomial_k0, "Fisheye Polynomial K0", 0.0f);
SOCKET_FLOAT(fisheye_polynomial_k1, "Fisheye Polynomial K1", 0.0f);
SOCKET_FLOAT(fisheye_polynomial_k2, "Fisheye Polynomial K2", 0.0f);
SOCKET_FLOAT(fisheye_polynomial_k3, "Fisheye Polynomial K3", 0.0f);
SOCKET_FLOAT(fisheye_polynomial_k4, "Fisheye Polynomial K4", 0.0f);
SOCKET_FLOAT(central_cylindrical_range_u_min, "Central Cylindrical Range U Min", -M_PI_F);
SOCKET_FLOAT(central_cylindrical_range_u_max, "Central Cylindrical Range U Max", M_PI_F);
SOCKET_FLOAT(central_cylindrical_range_v_min, "Central Cylindrical Range V Min", -1.0f);
SOCKET_FLOAT(central_cylindrical_range_v_max, "Central Cylindrical Range V Max", 1.0f);
static NodeEnum stereo_eye_enum;
stereo_eye_enum.insert("none", STEREO_NONE);
stereo_eye_enum.insert("left", STEREO_LEFT);
stereo_eye_enum.insert("right", STEREO_RIGHT);
SOCKET_ENUM(stereo_eye, "Stereo Eye", stereo_eye_enum, STEREO_NONE);
2019-06-21 16:24:56 +02:00
SOCKET_BOOLEAN(use_spherical_stereo, "Use Spherical Stereo", false);
SOCKET_FLOAT(interocular_distance, "Interocular Distance", 0.065f);
SOCKET_FLOAT(convergence_distance, "Convergence Distance", 30.0f * 0.065f);
SOCKET_BOOLEAN(use_pole_merge, "Use Pole Merge", false);
SOCKET_FLOAT(pole_merge_angle_from, "Pole Merge Angle From", 60.0f * M_PI_F / 180.0f);
SOCKET_FLOAT(pole_merge_angle_to, "Pole Merge Angle To", 75.0f * M_PI_F / 180.0f);
SOCKET_FLOAT(sensorwidth, "Sensor Width", 0.036f);
SOCKET_FLOAT(sensorheight, "Sensor Height", 0.024f);
SOCKET_FLOAT(nearclip, "Near Clip", 1e-5f);
SOCKET_FLOAT(farclip, "Far Clip", 1e5f);
SOCKET_FLOAT(viewplane.left, "Viewplane Left", 0);
SOCKET_FLOAT(viewplane.right, "Viewplane Right", 0);
SOCKET_FLOAT(viewplane.bottom, "Viewplane Bottom", 0);
SOCKET_FLOAT(viewplane.top, "Viewplane Top", 0);
SOCKET_FLOAT(border.left, "Border Left", 0);
SOCKET_FLOAT(border.right, "Border Right", 0);
SOCKET_FLOAT(border.bottom, "Border Bottom", 0);
SOCKET_FLOAT(border.top, "Border Top", 0);
SOCKET_FLOAT(viewport_camera_border.left, "Viewport Border Left", 0);
SOCKET_FLOAT(viewport_camera_border.right, "Viewport Border Right", 0);
SOCKET_FLOAT(viewport_camera_border.bottom, "Viewport Border Bottom", 0);
SOCKET_FLOAT(viewport_camera_border.top, "Viewport Border Top", 0);
SOCKET_FLOAT(offscreen_dicing_scale, "Offscreen Dicing Scale", 1.0f);
SOCKET_INT(full_width, "Full Width", 1024);
SOCKET_INT(full_height, "Full Height", 512);
SOCKET_BOOLEAN(use_perspective_motion, "Use Perspective Motion", false);
return type;
}
Camera::Camera() : Node(get_node_type())
{
shutter_table_offset = TABLE_OFFSET_INVALID;
width = 1024;
height = 512;
use_perspective_motion = false;
shutter_curve.resize(RAMP_TABLE_SIZE);
for (int i = 0; i < shutter_curve.size(); ++i) {
shutter_curve[i] = 1.0f;
}
compute_auto_viewplane();
screentoworld = projection_identity();
rastertoworld = projection_identity();
ndctoworld = projection_identity();
rastertocamera = projection_identity();
cameratoworld = transform_identity();
worldtoraster = projection_identity();
full_rastertocamera = projection_identity();
dx = zero_float3();
dy = zero_float3();
need_device_update = true;
need_flags_update = true;
previous_need_motion = -1;
memset((void *)&kernel_camera, 0, sizeof(kernel_camera));
}
Camera::~Camera() = default;
void Camera::compute_auto_viewplane()
{
if (camera_type == CAMERA_PANORAMA || camera_type == CAMERA_CUSTOM) {
viewplane.left = 0.0f;
viewplane.right = 1.0f;
viewplane.bottom = 0.0f;
viewplane.top = 1.0f;
}
else {
const float aspect = (float)full_width / (float)full_height;
if (full_width >= full_height) {
viewplane.left = -aspect;
viewplane.right = aspect;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
}
else {
viewplane.left = -1.0f;
viewplane.right = 1.0f;
viewplane.bottom = -1.0f / aspect;
viewplane.top = 1.0f / aspect;
}
}
}
void Camera::update(Scene *scene)
{
const Scene::MotionType need_motion = scene->need_motion();
if (previous_need_motion != need_motion) {
/* scene's motion model could have been changed since previous device
* camera update this could happen for example in case when one render
* layer has got motion pass and another not */
need_device_update = true;
}
if (!is_modified()) {
return;
}
const scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->camera.times.add_entry({"update", time});
}
});
/* Full viewport to camera border in the viewport. */
const Transform fulltoborder = transform_from_viewplane(viewport_camera_border);
const Transform bordertofull = transform_inverse(fulltoborder);
2021-02-05 16:23:34 +11:00
/* NDC to raster. */
const Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull;
const Transform full_ndctoraster = transform_scale(full_width, full_height, 1.0f) * bordertofull;
2021-02-05 16:23:34 +11:00
/* Raster to screen. */
const Transform screentondc = fulltoborder * transform_from_viewplane(viewplane);
const Transform screentoraster = ndctoraster * screentondc;
const Transform rastertoscreen = transform_inverse(screentoraster);
const Transform full_screentoraster = full_ndctoraster * screentondc;
const Transform full_rastertoscreen = transform_inverse(full_screentoraster);
2021-02-05 16:23:34 +11:00
/* Screen to camera. */
ProjectionTransform cameratoscreen;
if (camera_type == CAMERA_PERSPECTIVE) {
cameratoscreen = projection_perspective(fov, nearclip, farclip);
}
else if (camera_type == CAMERA_ORTHOGRAPHIC) {
cameratoscreen = projection_orthographic(nearclip, farclip);
}
else {
cameratoscreen = projection_identity();
}
const ProjectionTransform screentocamera = projection_inverse(cameratoscreen);
rastertocamera = screentocamera * rastertoscreen;
full_rastertocamera = screentocamera * full_rastertoscreen;
cameratoworld = matrix;
screentoworld = cameratoworld * screentocamera;
rastertoworld = cameratoworld * rastertocamera;
ndctoworld = rastertoworld * ndctoraster;
/* note we recompose matrices instead of taking inverses of the above, this
* is needed to avoid inverting near degenerate matrices that happen due to
* precision issues with large scenes */
worldtocamera = transform_inverse(matrix);
worldtoscreen = cameratoscreen * worldtocamera;
worldtondc = screentondc * worldtoscreen;
worldtoraster = ndctoraster * worldtondc;
/* differentials */
if (camera_type == CAMERA_ORTHOGRAPHIC) {
dx = transform_perspective_direction(&rastertocamera, make_float3(1, 0, 0));
dy = transform_perspective_direction(&rastertocamera, make_float3(0, 1, 0));
full_dx = transform_perspective_direction(&full_rastertocamera, make_float3(1, 0, 0));
full_dy = transform_perspective_direction(&full_rastertocamera, make_float3(0, 1, 0));
}
else if (camera_type == CAMERA_PERSPECTIVE) {
dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
full_dx = transform_perspective(&full_rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
full_dy = transform_perspective(&full_rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
}
else {
dx = zero_float3();
dy = zero_float3();
}
dx = transform_direction(&cameratoworld, dx);
dy = transform_direction(&cameratoworld, dy);
full_dx = transform_direction(&cameratoworld, full_dx);
full_dy = transform_direction(&cameratoworld, full_dy);
if (camera_type == CAMERA_PERSPECTIVE) {
float3 v = transform_perspective(&full_rastertocamera,
make_float3(full_width, full_height, 0.0f));
frustum_right_normal = normalize(make_float3(v.z, 0.0f, -v.x));
frustum_top_normal = normalize(make_float3(0.0f, v.z, -v.y));
v = transform_perspective(&full_rastertocamera, make_float3(0.0f, 0.0f, 0.0f));
frustum_left_normal = normalize(make_float3(-v.z, 0.0f, v.x));
frustum_bottom_normal = normalize(make_float3(0.0f, -v.z, v.y));
}
/* Compute kernel camera data. */
KernelCamera *kcam = &kernel_camera;
/* store matrices */
kcam->screentoworld = screentoworld;
kcam->rastertoworld = rastertoworld;
kcam->rastertocamera = rastertocamera;
kcam->cameratoworld = cameratoworld;
kcam->worldtocamera = worldtocamera;
kcam->worldtoscreen = worldtoscreen;
kcam->worldtoraster = worldtoraster;
kcam->worldtondc = worldtondc;
kcam->ndctoworld = ndctoworld;
/* camera motion */
kcam->num_motion_steps = 0;
kcam->have_perspective_motion = 0;
kernel_camera_motion.clear();
/* Test if any of the transforms are actually different. */
bool have_motion = false;
for (size_t i = 0; i < motion.size(); i++) {
have_motion = have_motion || motion[i] != matrix;
}
if (need_motion == Scene::MOTION_PASS) {
if (camera_type == CAMERA_PANORAMA || camera_type == CAMERA_CUSTOM) {
if (have_motion) {
kcam->motion_pass_pre = transform_inverse(motion[0]);
kcam->motion_pass_post = transform_inverse(motion[motion.size() - 1]);
}
else {
kcam->motion_pass_pre = kcam->worldtocamera;
kcam->motion_pass_post = kcam->worldtocamera;
}
}
else {
if (have_motion || fov != fov_pre || fov != fov_post) {
/* Note the values for perspective_pre/perspective_post calculated for MOTION_PASS are
* different to those calculated for MOTION_BLUR below, so the code has not been combined.
*/
const ProjectionTransform cameratoscreen_pre = projection_perspective(
fov_pre, nearclip, farclip);
const ProjectionTransform cameratoscreen_post = projection_perspective(
fov_post, nearclip, farclip);
const ProjectionTransform cameratoraster_pre = screentoraster * cameratoscreen_pre;
const ProjectionTransform cameratoraster_post = screentoraster * cameratoscreen_post;
kcam->perspective_pre = cameratoraster_pre * transform_inverse(motion[0]);
kcam->perspective_post = cameratoraster_post *
transform_inverse(motion[motion.size() - 1]);
}
else {
kcam->perspective_pre = worldtoraster;
kcam->perspective_post = worldtoraster;
}
}
}
else if (need_motion == Scene::MOTION_BLUR) {
if (have_motion) {
kernel_camera_motion.resize(motion.size());
transform_motion_decompose(kernel_camera_motion.data(), motion.data(), motion.size());
kcam->num_motion_steps = motion.size();
}
/* TODO(sergey): Support other types of camera. */
if (use_perspective_motion && camera_type == CAMERA_PERSPECTIVE) {
const ProjectionTransform screentocamera_pre = projection_inverse(
projection_perspective(fov_pre, nearclip, farclip));
const ProjectionTransform screentocamera_post = projection_inverse(
projection_perspective(fov_post, nearclip, farclip));
kcam->perspective_pre = screentocamera_pre * rastertoscreen;
kcam->perspective_post = screentocamera_post * rastertoscreen;
kcam->have_perspective_motion = 1;
}
}
/* depth of field */
kcam->aperturesize = aperturesize;
kcam->focaldistance = max(focaldistance, 1e-5f);
kcam->blades = (blades < 3) ? 0.0f : blades;
kcam->bladesrotation = bladesrotation;
/* motion blur */
kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime : -1.0f;
kcam->motion_position = motion_position;
/* type */
kcam->type = camera_type;
/* anamorphic lens bokeh */
kcam->inv_aperture_ratio = 1.0f / aperture_ratio;
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
/* panorama */
kcam->panorama_type = panorama_type;
kcam->fisheye_fov = fisheye_fov;
kcam->fisheye_lens = fisheye_lens;
kcam->equirectangular_range = make_float4(longitude_min - longitude_max,
-longitude_min,
latitude_min - latitude_max,
-latitude_min + M_PI_2_F);
kcam->fisheye_lens_polynomial_bias = fisheye_polynomial_k0;
2021-12-07 23:12:13 -05:00
kcam->fisheye_lens_polynomial_coefficients = make_float4(
fisheye_polynomial_k1, fisheye_polynomial_k2, fisheye_polynomial_k3, fisheye_polynomial_k4);
kcam->central_cylindrical_range = make_float4(-central_cylindrical_range_u_min,
-central_cylindrical_range_u_max,
central_cylindrical_range_v_min,
central_cylindrical_range_v_max);
Multi-View: Cycles - Spherical Stereo support (VR Panoramas) This is a new option for panorama cameras to render stereo that can be used in virtual reality devices The option is available under the camera panel when Multi-View is enabled (Views option in the Render Layers panel) Known limitations: ------------------ * Parallel convergence is not supported (you need to set a convergence distance really high to simulate this effect). * Pivot was not supposed to affect the render but it does, this has to be looked at, but for now set it to CENTER * Derivatives in perspective camera need to be pre-computed or we shuld get rid of kcam->dx/dy (Sergey words, I don't fully grasp the implication shere) * This works in perspective mode and in panorama mode. However, for fully benefit from this effect in perspective mode you need to render a cube map. (there is an addon for this, developed separately, perhaps we could include it in master). * We have no support for "neck distance" at the moment. This is supposed to help with objects at short distances. * We have no support to rotate the "Up Axis" of the stereo plane. Meaning, we hardcode 0,0,1 as UP, and create the stereo pair related to that. (although we could take the camera local UP when rendering panoramas, this wouldn't work for perspective cameras. * We have no support for interocular distance attenuation based on the proximity of the poles (which helps to reduce the pole rotation effect/artifact). THIS NEEDS DOCS - both in 2.78 release log and the Blender manual. Meanwhile you can read about it here: http://code.blender.org/2015/03/1451 This patch specifically dates from March 2015, as you can see in the code.blender.org post. Many thanks to all the reviewers, testers and minor sponsors who helped me maintain spherical-stereo for 1 year. All that said, have fun with this. This feature was what got me started with Multi-View development (at the time what I was looking for was Fulldome stereo support, but the implementation is the same). In order to make this into Blender I had to make it aiming at a less-specic user-case Thus Multi-View started. (this was December 2012, during Siggraph Asia and a chat I had with Paul Bourke during the conference). I don't have the original patch anymore, but you can find a re-based version of it from March 2013, right before I start with the Multi-View project https://developer.blender.org/P332 Reviewers: sergey, dingto Subscribers: #cycles Differential Revision: https://developer.blender.org/D1223
2016-03-10 09:28:29 -03:00
switch (stereo_eye) {
case STEREO_LEFT:
kcam->interocular_offset = -interocular_distance * 0.5f;
break;
case STEREO_RIGHT:
kcam->interocular_offset = interocular_distance * 0.5f;
break;
case STEREO_NONE:
default:
kcam->interocular_offset = 0.0f;
break;
}
Multi-View: Cycles - Spherical Stereo support (VR Panoramas) This is a new option for panorama cameras to render stereo that can be used in virtual reality devices The option is available under the camera panel when Multi-View is enabled (Views option in the Render Layers panel) Known limitations: ------------------ * Parallel convergence is not supported (you need to set a convergence distance really high to simulate this effect). * Pivot was not supposed to affect the render but it does, this has to be looked at, but for now set it to CENTER * Derivatives in perspective camera need to be pre-computed or we shuld get rid of kcam->dx/dy (Sergey words, I don't fully grasp the implication shere) * This works in perspective mode and in panorama mode. However, for fully benefit from this effect in perspective mode you need to render a cube map. (there is an addon for this, developed separately, perhaps we could include it in master). * We have no support for "neck distance" at the moment. This is supposed to help with objects at short distances. * We have no support to rotate the "Up Axis" of the stereo plane. Meaning, we hardcode 0,0,1 as UP, and create the stereo pair related to that. (although we could take the camera local UP when rendering panoramas, this wouldn't work for perspective cameras. * We have no support for interocular distance attenuation based on the proximity of the poles (which helps to reduce the pole rotation effect/artifact). THIS NEEDS DOCS - both in 2.78 release log and the Blender manual. Meanwhile you can read about it here: http://code.blender.org/2015/03/1451 This patch specifically dates from March 2015, as you can see in the code.blender.org post. Many thanks to all the reviewers, testers and minor sponsors who helped me maintain spherical-stereo for 1 year. All that said, have fun with this. This feature was what got me started with Multi-View development (at the time what I was looking for was Fulldome stereo support, but the implementation is the same). In order to make this into Blender I had to make it aiming at a less-specic user-case Thus Multi-View started. (this was December 2012, during Siggraph Asia and a chat I had with Paul Bourke during the conference). I don't have the original patch anymore, but you can find a re-based version of it from March 2013, right before I start with the Multi-View project https://developer.blender.org/P332 Reviewers: sergey, dingto Subscribers: #cycles Differential Revision: https://developer.blender.org/D1223
2016-03-10 09:28:29 -03:00
kcam->convergence_distance = convergence_distance;
if (use_pole_merge) {
kcam->pole_merge_angle_from = pole_merge_angle_from;
kcam->pole_merge_angle_to = pole_merge_angle_to;
}
else {
kcam->pole_merge_angle_from = -1.0f;
kcam->pole_merge_angle_to = -1.0f;
}
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
/* sensor size */
kcam->sensorwidth = sensorwidth;
kcam->sensorheight = sensorheight;
/* render size */
kcam->width = width;
kcam->height = height;
/* store differentials */
kcam->dx = make_float4(dx);
kcam->dy = make_float4(dy);
/* clipping */
kcam->nearclip = nearclip;
kcam->cliplength = (farclip == FLT_MAX) ? FLT_MAX : farclip - nearclip;
/* Rolling shutter effect */
kcam->rolling_shutter_type = rolling_shutter_type;
kcam->rolling_shutter_duration = rolling_shutter_duration;
/* Set further update flags */
clear_modified();
need_device_update = true;
need_flags_update = true;
previous_need_motion = need_motion;
}
void Camera::device_update(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
update(scene);
if (!need_device_update) {
return;
}
const scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->camera.times.add_entry({"device_update", time});
}
});
scene->lookup_tables->remove_table(&shutter_table_offset);
if (kernel_camera.shuttertime != -1.0f) {
vector<float> shutter_table;
util_cdf_inverted(
SHUTTER_TABLE_SIZE,
0.0f,
1.0f,
[this](const float x) { return shutter_curve_eval(x, shutter_curve); },
false,
shutter_table);
shutter_table_offset = scene->lookup_tables->add_table(dscene, shutter_table);
kernel_camera.shutter_table_offset = (int)shutter_table_offset;
}
dscene->data.cam = kernel_camera;
const size_t num_motion_steps = kernel_camera_motion.size();
if (num_motion_steps) {
DecomposedTransform *camera_motion = dscene->camera_motion.alloc(num_motion_steps);
std::copy_n(kernel_camera_motion.data(), num_motion_steps, camera_motion);
dscene->camera_motion.copy_to_device();
}
else {
dscene->camera_motion.free();
}
}
void Camera::device_update_volume(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
if (!need_device_update && !need_flags_update) {
return;
}
kernel_camera.is_inside_volume = 0;
KernelIntegrator *kintegrator = &dscene->data.integrator;
if (kintegrator->use_volumes) {
BoundBox viewplane_boundbox = viewplane_bounds_get();
/* Parallel object update, with grain size to avoid too much threading overhead
* for individual objects. */
static const int OBJECTS_PER_TASK = 32;
parallel_for(blocked_range<size_t>(0, scene->objects.size(), OBJECTS_PER_TASK),
[&](const blocked_range<size_t> &r) {
for (size_t i = r.begin(); i != r.end(); i++) {
Object *object = scene->objects[i];
if (object->get_geometry()->has_volume &&
viewplane_boundbox.intersects(object->bounds)) {
/* TODO(sergey): Consider adding more grained check. */
VLOG_INFO << "Detected camera inside volume.";
kernel_camera.is_inside_volume = 1;
parallel_for_cancel();
break;
}
}
});
if (!kernel_camera.is_inside_volume) {
VLOG_INFO << "Camera is outside of the volume.";
}
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
}
dscene->data.cam.is_inside_volume = kernel_camera.is_inside_volume;
need_device_update = false;
need_flags_update = false;
}
void Camera::device_free(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
scene->lookup_tables->remove_table(&shutter_table_offset);
dscene->camera_motion.free();
}
float3 Camera::transform_full_raster_to_world(const float raster_x, const float raster_y)
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
{
float3 D;
float3 P;
if (camera_type == CAMERA_PERSPECTIVE) {
D = transform_perspective(&full_rastertocamera, make_float3(raster_x, raster_y, 0.0f));
const float3 Pclip = normalize(D);
P = zero_float3();
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
/* TODO(sergey): Aperture support? */
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
/* TODO(sergey): Clipping is conditional in kernel, and hence it could
* be mistakes in here, currently leading to wrong camera-in-volume
* detection.
*/
P += nearclip * D / Pclip.z;
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
}
else if (camera_type == CAMERA_ORTHOGRAPHIC) {
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
D = make_float3(0.0f, 0.0f, 1.0f);
/* TODO(sergey): Aperture support? */
P = transform_perspective(&full_rastertocamera, make_float3(raster_x, raster_y, 0.0f));
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
}
else {
assert(!"unsupported camera type");
}
return P;
}
BoundBox Camera::viewplane_bounds_get()
{
/* TODO(sergey): This is all rather stupid, but is there a way to perform
2019-08-11 22:41:04 +10:00
* checks we need in a more clear and smart fashion? */
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
BoundBox bounds = BoundBox::empty;
const float max_aperture_size = aperture_ratio < 1.0f ? aperturesize / aperture_ratio :
aperturesize;
if (camera_type == CAMERA_PANORAMA || camera_type == CAMERA_CUSTOM) {
const float extend = max_aperture_size + nearclip;
Multi-View: Cycles - Spherical Stereo support (VR Panoramas) This is a new option for panorama cameras to render stereo that can be used in virtual reality devices The option is available under the camera panel when Multi-View is enabled (Views option in the Render Layers panel) Known limitations: ------------------ * Parallel convergence is not supported (you need to set a convergence distance really high to simulate this effect). * Pivot was not supposed to affect the render but it does, this has to be looked at, but for now set it to CENTER * Derivatives in perspective camera need to be pre-computed or we shuld get rid of kcam->dx/dy (Sergey words, I don't fully grasp the implication shere) * This works in perspective mode and in panorama mode. However, for fully benefit from this effect in perspective mode you need to render a cube map. (there is an addon for this, developed separately, perhaps we could include it in master). * We have no support for "neck distance" at the moment. This is supposed to help with objects at short distances. * We have no support to rotate the "Up Axis" of the stereo plane. Meaning, we hardcode 0,0,1 as UP, and create the stereo pair related to that. (although we could take the camera local UP when rendering panoramas, this wouldn't work for perspective cameras. * We have no support for interocular distance attenuation based on the proximity of the poles (which helps to reduce the pole rotation effect/artifact). THIS NEEDS DOCS - both in 2.78 release log and the Blender manual. Meanwhile you can read about it here: http://code.blender.org/2015/03/1451 This patch specifically dates from March 2015, as you can see in the code.blender.org post. Many thanks to all the reviewers, testers and minor sponsors who helped me maintain spherical-stereo for 1 year. All that said, have fun with this. This feature was what got me started with Multi-View development (at the time what I was looking for was Fulldome stereo support, but the implementation is the same). In order to make this into Blender I had to make it aiming at a less-specic user-case Thus Multi-View started. (this was December 2012, during Siggraph Asia and a chat I had with Paul Bourke during the conference). I don't have the original patch anymore, but you can find a re-based version of it from March 2013, right before I start with the Multi-View project https://developer.blender.org/P332 Reviewers: sergey, dingto Subscribers: #cycles Differential Revision: https://developer.blender.org/D1223
2016-03-10 09:28:29 -03:00
if (use_spherical_stereo == false) {
bounds.grow(make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w), extend);
Multi-View: Cycles - Spherical Stereo support (VR Panoramas) This is a new option for panorama cameras to render stereo that can be used in virtual reality devices The option is available under the camera panel when Multi-View is enabled (Views option in the Render Layers panel) Known limitations: ------------------ * Parallel convergence is not supported (you need to set a convergence distance really high to simulate this effect). * Pivot was not supposed to affect the render but it does, this has to be looked at, but for now set it to CENTER * Derivatives in perspective camera need to be pre-computed or we shuld get rid of kcam->dx/dy (Sergey words, I don't fully grasp the implication shere) * This works in perspective mode and in panorama mode. However, for fully benefit from this effect in perspective mode you need to render a cube map. (there is an addon for this, developed separately, perhaps we could include it in master). * We have no support for "neck distance" at the moment. This is supposed to help with objects at short distances. * We have no support to rotate the "Up Axis" of the stereo plane. Meaning, we hardcode 0,0,1 as UP, and create the stereo pair related to that. (although we could take the camera local UP when rendering panoramas, this wouldn't work for perspective cameras. * We have no support for interocular distance attenuation based on the proximity of the poles (which helps to reduce the pole rotation effect/artifact). THIS NEEDS DOCS - both in 2.78 release log and the Blender manual. Meanwhile you can read about it here: http://code.blender.org/2015/03/1451 This patch specifically dates from March 2015, as you can see in the code.blender.org post. Many thanks to all the reviewers, testers and minor sponsors who helped me maintain spherical-stereo for 1 year. All that said, have fun with this. This feature was what got me started with Multi-View development (at the time what I was looking for was Fulldome stereo support, but the implementation is the same). In order to make this into Blender I had to make it aiming at a less-specic user-case Thus Multi-View started. (this was December 2012, during Siggraph Asia and a chat I had with Paul Bourke during the conference). I don't have the original patch anymore, but you can find a re-based version of it from March 2013, right before I start with the Multi-View project https://developer.blender.org/P332 Reviewers: sergey, dingto Subscribers: #cycles Differential Revision: https://developer.blender.org/D1223
2016-03-10 09:28:29 -03:00
}
else {
const float half_eye_distance = interocular_distance * 0.5f;
bounds.grow(
make_float3(cameratoworld.x.w + half_eye_distance, cameratoworld.y.w, cameratoworld.z.w),
extend);
bounds.grow(
make_float3(cameratoworld.z.w, cameratoworld.y.w + half_eye_distance, cameratoworld.z.w),
extend);
bounds.grow(
make_float3(cameratoworld.x.w - half_eye_distance, cameratoworld.y.w, cameratoworld.z.w),
extend);
bounds.grow(
make_float3(cameratoworld.x.w, cameratoworld.y.w - half_eye_distance, cameratoworld.z.w),
extend);
}
Multi-View: Cycles - Spherical Stereo support (VR Panoramas) This is a new option for panorama cameras to render stereo that can be used in virtual reality devices The option is available under the camera panel when Multi-View is enabled (Views option in the Render Layers panel) Known limitations: ------------------ * Parallel convergence is not supported (you need to set a convergence distance really high to simulate this effect). * Pivot was not supposed to affect the render but it does, this has to be looked at, but for now set it to CENTER * Derivatives in perspective camera need to be pre-computed or we shuld get rid of kcam->dx/dy (Sergey words, I don't fully grasp the implication shere) * This works in perspective mode and in panorama mode. However, for fully benefit from this effect in perspective mode you need to render a cube map. (there is an addon for this, developed separately, perhaps we could include it in master). * We have no support for "neck distance" at the moment. This is supposed to help with objects at short distances. * We have no support to rotate the "Up Axis" of the stereo plane. Meaning, we hardcode 0,0,1 as UP, and create the stereo pair related to that. (although we could take the camera local UP when rendering panoramas, this wouldn't work for perspective cameras. * We have no support for interocular distance attenuation based on the proximity of the poles (which helps to reduce the pole rotation effect/artifact). THIS NEEDS DOCS - both in 2.78 release log and the Blender manual. Meanwhile you can read about it here: http://code.blender.org/2015/03/1451 This patch specifically dates from March 2015, as you can see in the code.blender.org post. Many thanks to all the reviewers, testers and minor sponsors who helped me maintain spherical-stereo for 1 year. All that said, have fun with this. This feature was what got me started with Multi-View development (at the time what I was looking for was Fulldome stereo support, but the implementation is the same). In order to make this into Blender I had to make it aiming at a less-specic user-case Thus Multi-View started. (this was December 2012, during Siggraph Asia and a chat I had with Paul Bourke during the conference). I don't have the original patch anymore, but you can find a re-based version of it from March 2013, right before I start with the Multi-View project https://developer.blender.org/P332 Reviewers: sergey, dingto Subscribers: #cycles Differential Revision: https://developer.blender.org/D1223
2016-03-10 09:28:29 -03:00
}
else {
/* max_aperture_size = Max horizontal distance a ray travels from aperture edge to focus point.
* Scale that value based on the ratio between focaldistance and nearclip to figure out the
* horizontal distance the DOF ray will travel before reaching the nearclip plane, where it
* will start rendering from.
* In some cases (focus distance is close to camera, and nearclip plane is far from camera),
* this scaled value is larger than nearclip, in which case we add it to `extend` to extend the
* bounding box to account for these rays.
*
* ----------------- nearclip plane
* / scaled_horz_dof_ray, nearclip
* /
* /
* / max_aperture_size, focaldistance
* /|
* / |
* / |
* / |
* ------ max_aperture_size, 0
* 0, 0
*/
const float scaled_horz_dof_ray = (max_aperture_size > 0.0f) ?
max_aperture_size * (nearclip / focaldistance) :
0.0f;
const float extend = max_aperture_size + max(nearclip, scaled_horz_dof_ray);
bounds.grow(transform_full_raster_to_world(0.0f, 0.0f), extend);
bounds.grow(transform_full_raster_to_world(0.0f, (float)full_height), extend);
bounds.grow(transform_full_raster_to_world((float)full_width, (float)full_height), extend);
bounds.grow(transform_full_raster_to_world((float)full_width, 0.0f), extend);
if (camera_type == CAMERA_PERSPECTIVE) {
2015-04-13 22:08:51 +10:00
/* Center point has the most distance in local Z axis,
* use it to construct bounding box/
*/
bounds.grow(transform_full_raster_to_world(0.5f * full_width, 0.5f * full_height), extend);
}
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 23:49:59 +06:00
}
return bounds;
}
float Camera::world_to_raster_size(const float3 P)
{
float res = 1.0f;
if (camera_type == CAMERA_ORTHOGRAPHIC) {
res = min(len(full_dx), len(full_dy));
if (offscreen_dicing_scale > 1.0f) {
const float3 p = transform_point(&worldtocamera, P);
const float3 v1 = transform_perspective(&full_rastertocamera,
make_float3(full_width, full_height, 0.0f));
const float3 v2 = transform_perspective(&full_rastertocamera, zero_float3());
/* Create point clamped to frustum */
float3 c;
c.x = max(v2.x, min(v1.x, p.x));
c.y = max(v2.y, min(v1.y, p.y));
c.z = max(0.0f, p.z);
/* Check right side */
float f_dist = len(p - c) / sqrtf((v1.x * v1.x + v1.y * v1.y) * 0.5f);
if (f_dist < 0.0f) {
/* Check left side */
f_dist = len(p - c) / sqrtf((v2.x * v2.x + v2.y * v2.y) * 0.5f);
}
if (f_dist > 0.0f) {
res += res * f_dist * (offscreen_dicing_scale - 1.0f);
}
}
}
else if (camera_type == CAMERA_PERSPECTIVE) {
/* Calculate as if point is directly ahead of the camera. */
const float3 raster = make_float3(0.5f * full_width, 0.5f * full_height, 0.0f);
const float3 Pcamera = transform_perspective(&full_rastertocamera, raster);
/* dDdx */
const float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
const float3 dx = len_squared(full_dx) < len_squared(full_dy) ? full_dx : full_dy;
const float3 dDdx = normalize(Ddiff + dx) - normalize(Ddiff);
/* dPdx */
const float dist = len(transform_point(&worldtocamera, P));
const float3 D = normalize(Ddiff);
res = len(dist * dDdx - dot(dist * dDdx, D) * D);
/* Decent approx distance to frustum
* (doesn't handle corners correctly, but not that big of a deal) */
float f_dist = 0.0f;
if (offscreen_dicing_scale > 1.0f) {
const float3 p = transform_point(&worldtocamera, P);
/* Distance from the four planes */
const float r = dot(p, frustum_right_normal);
const float t = dot(p, frustum_top_normal);
const float l = dot(p, frustum_left_normal);
const float b = dot(p, frustum_bottom_normal);
if (r <= 0.0f && l <= 0.0f && t <= 0.0f && b <= 0.0f) {
/* Point is inside frustum */
f_dist = 0.0f;
}
else if (r > 0.0f && l > 0.0f && t > 0.0f && b > 0.0f) {
/* Point is behind frustum */
f_dist = len(p);
}
else {
/* Point may be behind or off to the side, need to check */
const float3 along_right = make_float3(
-frustum_right_normal.z, 0.0f, frustum_right_normal.x);
const float3 along_left = make_float3(frustum_left_normal.z, 0.0f, -frustum_left_normal.x);
const float3 along_top = make_float3(0.0f, -frustum_top_normal.z, frustum_top_normal.y);
const float3 along_bottom = make_float3(
0.0f, frustum_bottom_normal.z, -frustum_bottom_normal.y);
float dist[] = {r, l, t, b};
float3 along[] = {along_right, along_left, along_top, along_bottom};
bool test_o = false;
float *d = dist;
float3 *a = along;
for (int i = 0; i < 4; i++, d++, a++) {
/* Test if we should check this side at all */
if (*d > 0.0f) {
if (dot(p, *a) >= 0.0f) {
/* We are in front of the back edge of this side of the frustum */
f_dist = max(f_dist, *d);
}
else {
/* Possibly far enough behind the frustum to use distance to origin instead of edge
*/
test_o = true;
}
}
}
if (test_o) {
f_dist = (f_dist > 0) ? min(f_dist, len(p)) : len(p);
}
}
if (f_dist > 0.0f) {
res += len(dDdx - dot(dDdx, D) * D) * f_dist * (offscreen_dicing_scale - 1.0f);
}
}
}
else if (camera_type == CAMERA_PANORAMA || camera_type == CAMERA_CUSTOM) {
const float3 D = transform_point(&worldtocamera, P);
const float dist = len(D);
Ray ray = {};
/* Distortion can become so great that the results become meaningless, there
* may be a better way to do this, but calculating differentials from the
* point directly ahead seems to produce good enough results. */
if (camera_type == CAMERA_CUSTOM) {
camera_sample_custom(nullptr,
&kernel_camera,
kernel_camera_motion.data(),
0.5f * make_float2(full_width, full_height),
zero_float2(),
&ray);
}
else {
#if 0
float2 dir = direction_to_panorama(&kernel_camera, kernel_camera_motion.data(), normalize(D));
float3 raster = transform_perspective(&full_cameratoraster, make_float3(dir.x, dir.y, 0.0f));
ray.t = 1.0f;
camera_sample_panorama(
&kernel_camera, kernel_camera_motion.data(), raster.x, raster.y, 0.0f, 0.0f, &ray);
if (ray.t == 0.0f) {
/* No differentials, just use from directly ahead. */
camera_sample_panorama(&kernel_camera,
kernel_camera_motion.data(),
0.5f * make_float2(full_width, full_height),
zero_float2(),
&ray);
}
#else
camera_sample_panorama(&kernel_camera,
kernel_camera_motion.data(),
0.5f * make_float2(full_width, full_height),
zero_float2(),
&ray);
#endif
}
/* TODO: would it help to use more accurate differentials here? */
return differential_transfer_compact(ray.dP, ray.D, ray.dD, dist);
}
return res;
}
bool Camera::use_motion() const
{
return motion.size() > 1;
}
bool Camera::set_screen_size(const int width_, int height_)
{
if (width_ != width || height_ != height) {
width = width_;
height = height_;
tag_modified();
return true;
}
return false;
}
float Camera::motion_time(const int step) const
{
return (use_motion()) ? 2.0f * step / (motion.size() - 1) - 1.0f : 0.0f;
}
int Camera::motion_step(const float time) const
{
if (use_motion()) {
for (int step = 0; step < motion.size(); step++) {
if (time == motion_time(step)) {
return step;
}
}
}
return -1;
}
void Camera::set_osl_camera(Scene *scene,
OSLCameraParamQuery &params,
const std::string &filepath,
const std::string &bytecode_hash,
const std::string &bytecode)
{
#ifdef WITH_OSL
/* Load the shader. */
const char *hash;
if (!filepath.empty()) {
hash = scene->osl_manager->shader_load_filepath(filepath);
}
else {
hash = scene->osl_manager->shader_test_loaded(bytecode_hash);
if (!hash)
hash = scene->osl_manager->shader_load_bytecode(bytecode_hash, bytecode);
}
bool changed = false;
if (!hash) {
changed = (!script_name.empty() || !script_params.empty());
script_name = "";
script_params.clear();
}
else {
changed = (script_name != hash);
script_name = hash;
OSLShaderInfo *info = scene->osl_manager->shader_loaded_info(hash);
/* Fetch parameter values. */
std::set<ustring> used_params;
for (int i = 0; i < info->query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = info->query.getparam(i);
/* Skip unsupported types. */
if (param->varlenarray || param->isstruct || param->type.arraylen > 1 || param->isoutput ||
param->isclosure)
continue;
vector<uint8_t> raw_data;
int vec_size = (int)param->type.aggregate;
if (param->type.basetype == TypeDesc::INT) {
vector<int> data;
if (!params.get_int(param->name, data) || data.size() != vec_size)
continue;
raw_data.resize(sizeof(int) * vec_size);
memcpy(raw_data.data(), data.data(), sizeof(int) * vec_size);
}
else if (param->type.basetype == TypeDesc::FLOAT) {
vector<float> data;
if (!params.get_float(param->name, data) || data.size() != vec_size)
continue;
raw_data.resize(sizeof(float) * vec_size);
memcpy(raw_data.data(), data.data(), sizeof(float) * vec_size);
}
else if (param->type.basetype == TypeDesc::STRING) {
string data;
if (!params.get_string(param->name, data))
continue;
raw_data.resize(data.length() + 1);
memcpy(raw_data.data(), data.c_str(), data.length() + 1);
}
else
continue;
auto entry = std::make_pair(raw_data, param->type);
auto it = script_params.find(param->name);
if (it == script_params.end()) {
script_params[param->name] = entry;
changed = true;
}
else if (it->second != entry) {
it->second = entry;
changed = true;
}
used_params.insert(param->name);
}
/* Remove unused parameters. */
for (auto it = script_params.begin(); it != script_params.end();) {
if (used_params.count(it->first))
it++;
else {
it = script_params.erase(it);
changed = true;
}
}
}
if (changed) {
tag_modified();
scene->osl_manager->tag_update();
}
#else
(void)scene;
(void)params;
(void)filepath;
(void)bytecode_hash;
(void)bytecode;
#endif
}
void Camera::clear_osl_camera(Scene *scene)
{
#ifdef WITH_OSL
if (script_name == "") {
return;
}
script_name = "";
script_params.clear();
scene->osl_manager->tag_update();
#else
(void)scene;
#endif
}
uint Camera::get_kernel_features() const
{
uint kernel_features = 0;
if (!script_name.empty()) {
kernel_features |= KERNEL_FEATURE_OSL_CAMERA;
}
return kernel_features;
}
CCL_NAMESPACE_END