Files
test2/source/blender/freestyle/intern/stroke/BasicStrokeShaders.cpp

678 lines
19 KiB
C++
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/freestyle/intern/stroke/BasicStrokeShaders.cpp
* \ingroup freestyle
* \brief Class gathering basic stroke shaders
* \author Stephane Grabli
* \date 17/12/2002
*/
2008-04-30 15:41:54 +00:00
#include <fstream>
#include "AdvancedFunctions0D.h"
#include "AdvancedFunctions1D.h"
2008-04-30 15:41:54 +00:00
#include "BasicStrokeShaders.h"
#include "StrokeIO.h"
#include "StrokeIterators.h"
#include "StrokeRenderer.h"
2008-04-30 15:41:54 +00:00
#include "../system/PseudoNoise.h"
#include "../system/RandGen.h"
#include "../system/StringUtils.h"
2008-04-30 15:41:54 +00:00
#include "../view_map/Functions0D.h"
#include "../view_map/Functions1D.h"
#include "BKE_global.h"
extern "C" {
# include "IMB_imbuf.h"
# include "IMB_imbuf_types.h"
}
2008-04-30 15:41:54 +00:00
Attempt to fix a potential name conflict between Freestyle and the compositor. A crash in the Freestyle renderer was reported by Ton on IRC with a stack trace below. Note that #2 is in Freestyle, whereas #1 is in the compositor. The problem was observed in a debug build on OS X 10.7 (gcc 4.2, openmp disabled, no llvm). ---------------------------------------------------------------------- Program received signal EXC_BAD_ACCESS, Could not access memory. Reason: 13 at address: 0x0000000000000000 [Switching to process 72386 thread 0xf303] 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 43 delete (this->m_outputsockets.back()); Current language: auto; currently c++ (gdb) where #0 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 #1 0x0000000100c29066 in Node::~Node (this=0x10e501c80) at COM_Node.h:49 #2 0x000000010089c273 in NodeShape::~NodeShape (this=0x10e501c80) at NodeShape.cpp:43 #3 0x000000010089910b in NodeGroup::destroy (this=0x10e501da0) at NodeGroup.cpp:61 #4 0x00000001008990cd in NodeGroup::destroy (this=0x10e5014b0) at NodeGroup.cpp:59 #5 0x00000001008990cd in NodeGroup::destroy (this=0x114e18da0) at NodeGroup.cpp:59 #6 0x00000001007e6602 in Controller::ClearRootNode (this=0x114e19640) at Controller.cpp:329 #7 0x00000001007ea52e in Controller::LoadMesh (this=0x114e19640, re=0x10aba4638, srl=0x1140f5258) at Controller.cpp:302 #8 0x00000001008030ad in prepare (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:302 #9 0x000000010080457a in FRS_do_stroke_rendering (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:600 #10 0x00000001006aeb9d in add_freestyle (re=0x10aba4638) at pipeline.c:1584 #11 0x00000001006aceb7 in do_render_3d (re=0x10aba4638) at pipeline.c:1094 #12 0x00000001006ae061 in do_render_fields_blur_3d (re=0x10aba4638) at pipeline.c:1367 #13 0x00000001006afa16 in do_render_composite_fields_blur_3d (re=0x10aba4638) at pipeline.c:1815 #14 0x00000001006b04e4 in do_render_all_options (re=0x10aba4638) at pipeline.c:2021 ---------------------------------------------------------------------- Apparently a name conflict between the two Blender modules is taking place. The present commit hence intends to address it by putting all the Freestyle C++ classes in the namespace 'Freestyle'. This revision will also prevent potential name conflicts with other Blender modules in the future. Special thanks to Lukas Toenne for the help with C++ namespace.
2013-04-09 00:46:49 +00:00
namespace Freestyle {
2008-04-30 15:41:54 +00:00
namespace StrokeShaders {
//
// Thickness modifiers
//
//////////////////////////////////////////////////////////
int ConstantThicknessShader::shade(Stroke& stroke) const
{
StrokeInternal::StrokeVertexIterator v, vend;
int i = 0;
int size = stroke.strokeVerticesSize();
for (v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
// XXX What's the use of i here? And is not the thickness always overriden by the last line of the loop?
if ((1 == i) || (size - 2 == i))
v->attribute().setThickness(_thickness / 4.0, _thickness / 4.0);
if ((0 == i) || (size - 1 == i))
v->attribute().setThickness(0, 0);
v->attribute().setThickness(_thickness / 2.0, _thickness / 2.0);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int ConstantExternThicknessShader::shade(Stroke& stroke) const
{
StrokeInternal::StrokeVertexIterator v, vend;
int i = 0;
int size = stroke.strokeVerticesSize();
for (v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
// XXX What's the use of i here? And is not the thickness always overriden by the last line of the loop?
if ((1 == i) || (size - 2 == i))
v->attribute().setThickness(_thickness / 2.0, 0);
if ((0 == i) || (size - 1 == i))
v->attribute().setThickness(0, 0);
v->attribute().setThickness(_thickness, 0);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int IncreasingThicknessShader::shade(Stroke& stroke) const
{
int n = stroke.strokeVerticesSize() - 1, i;
StrokeInternal::StrokeVertexIterator v, vend;
for (i = 0, v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd();
v != vend;
++v, ++i)
{
float t;
if (i < (float)n / 2.0f)
t = (1.0 - (float)i / (float)n) * _ThicknessMin + (float)i / (float)n * _ThicknessMax;
else
t = (1.0 - (float)i / (float)n) * _ThicknessMax + (float)i / (float)n * _ThicknessMin;
v->attribute().setThickness(t / 2.0, t / 2.0);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int ConstrainedIncreasingThicknessShader::shade(Stroke& stroke) const
{
float slength = stroke.getLength2D();
float maxT = min(_ratio * slength, _ThicknessMax);
int n = stroke.strokeVerticesSize() - 1, i;
StrokeInternal::StrokeVertexIterator v, vend;
for (i = 0, v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd();
v != vend;
++v, ++i)
{
// XXX Why not using an if/else here? Else, if last condition is true, everything else is computed for nothing!
float t;
if (i < (float)n / 2.0f)
t = (1.0 - (float)i / (float)n) * _ThicknessMin + (float)i / (float)n * maxT;
else
t = (1.0 - (float)i / (float)n) * maxT + (float)i / (float)n * _ThicknessMin;
v->attribute().setThickness(t / 2.0, t / 2.0);
if (i == n - 1)
v->attribute().setThickness(_ThicknessMin / 2.0, _ThicknessMin / 2.0);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int LengthDependingThicknessShader::shade(Stroke& stroke) const
{
float step = (_maxThickness - _minThickness) / 3.0f;
float l = stroke.getLength2D();
float thickness = 0.0f;
if (l > 300.0f)
thickness = _minThickness + 3.0f * step;
else if ((l < 300.0f) && (l > 100.0f))
thickness = _minThickness + 2.0f * step;
else if ((l < 100.0f) && (l > 50.0f))
thickness = _minThickness + 1.0f * step;
else // else if (l < 50.0f), tsst...
thickness = _minThickness;
StrokeInternal::StrokeVertexIterator v, vend;
int i = 0;
int size = stroke.strokeVerticesSize();
for (v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
// XXX What's the use of i here? And is not the thickness always overriden by the last line of the loop?
if ((1 == i) || (size - 2 == i))
v->attribute().setThickness(thickness / 4.0, thickness / 4.0);
if ((0 == i) || (size - 1 == i))
v->attribute().setThickness(0, 0);
v->attribute().setThickness(thickness / 2.0, thickness / 2.0);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
static const unsigned NB_VALUE_NOISE = 512;
ThicknessNoiseShader::ThicknessNoiseShader() : StrokeShader()
{
_amplitude = 1.0f;
_scale = 1.0f / 2.0f / (float)NB_VALUE_NOISE;
}
ThicknessNoiseShader::ThicknessNoiseShader(float iAmplitude, float iPeriod) : StrokeShader()
{
_amplitude = iAmplitude;
_scale = 1.0f / iPeriod / (float)NB_VALUE_NOISE;
}
int ThicknessNoiseShader::shade(Stroke& stroke) const
{
StrokeInternal::StrokeVertexIterator v = stroke.strokeVerticesBegin(), vend;
real initU1 = v->strokeLength() * real(NB_VALUE_NOISE) + RandGen::drand48() * real(NB_VALUE_NOISE);
real initU2 = v->strokeLength() * real(NB_VALUE_NOISE) + RandGen::drand48() * real(NB_VALUE_NOISE);
real bruit, bruit2;
PseudoNoise mynoise, mynoise2;
for (vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
bruit = mynoise.turbulenceSmooth(_scale * v->curvilinearAbscissa() + initU1, 2); // 2 : nbOctaves
bruit2 = mynoise2.turbulenceSmooth(_scale * v->curvilinearAbscissa() + initU2, 2); // 2 : nbOctaves
const float *originalThickness = v->attribute().getThickness();
float r = bruit * _amplitude + originalThickness[0];
float l = bruit2 * _amplitude + originalThickness[1];
v->attribute().setThickness(r, l);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
//
// Color shaders
//
///////////////////////////////////////////////////////////////////////////////
int ConstantColorShader::shade(Stroke& stroke) const
{
StrokeInternal::StrokeVertexIterator v, vend;
for (v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
v->attribute().setColor(_color[0], _color[1], _color[2]);
v->attribute().setAlpha(_color[3]);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int IncreasingColorShader::shade(Stroke& stroke) const
{
StrokeInternal::StrokeVertexIterator v, vend;
int n = stroke.strokeVerticesSize() - 1, yo;
float newcolor[4];
for (yo = 0, v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd();
v != vend;
++v, ++yo)
{
for (int i = 0; i < 4; ++i) {
newcolor[i] = (1.0 - (float) yo / (float)n) * _colorMin[i] + (float)yo / (float)n * _colorMax[i];
}
v->attribute().setColor(newcolor[0], newcolor[1], newcolor[2]);
v->attribute().setAlpha(newcolor[3]);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int MaterialColorShader::shade(Stroke& stroke) const
{
Interface0DIterator v, vend;
Functions0D::MaterialF0D fun;
StrokeVertex *sv;
for (v = stroke.verticesBegin(), vend = stroke.verticesEnd(); v != vend; ++v) {
if (fun(v) < 0)
return -1;
const float *diffuse = fun.result.diffuse();
sv = dynamic_cast<StrokeVertex*>(&(*v));
sv->attribute().setColor(diffuse[0] * _coefficient, diffuse[1] * _coefficient, diffuse[2] * _coefficient);
sv->attribute().setAlpha(diffuse[3]);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
ColorNoiseShader::ColorNoiseShader() : StrokeShader()
{
_amplitude = 1.0f;
_scale = 1.0f / 2.0f / (float)NB_VALUE_NOISE;
}
ColorNoiseShader::ColorNoiseShader(float iAmplitude, float iPeriod) : StrokeShader()
{
_amplitude = iAmplitude;
_scale = 1.0f / iPeriod / (float)NB_VALUE_NOISE;
}
int ColorNoiseShader::shade(Stroke& stroke) const
{
StrokeInternal::StrokeVertexIterator v = stroke.strokeVerticesBegin(), vend;
real initU = v->strokeLength() * real(NB_VALUE_NOISE) + RandGen::drand48() * real(NB_VALUE_NOISE);
real bruit;
PseudoNoise mynoise;
for (vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
bruit = mynoise.turbulenceSmooth(_scale * v->curvilinearAbscissa() + initU, 2); // 2 : nbOctaves
const float *originalColor = v->attribute().getColor();
float r = bruit * _amplitude + originalColor[0];
float g = bruit * _amplitude + originalColor[1];
float b = bruit * _amplitude + originalColor[2];
v->attribute().setColor(r, g, b);
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
//
// Texture Shaders
//
///////////////////////////////////////////////////////////////////////////////
int BlenderTextureShader::shade(Stroke& stroke) const
{
if (_mtex)
return stroke.setMTex(_mtex);
if (_nodeTree) {
stroke.setNodeTree(_nodeTree);
return 0;
}
return -1;
}
int StrokeTextureStepShader::shade(Stroke& stroke) const
{
stroke.setTextureStep(_step);
return 0;
}
//
// Geometry Shaders
//
///////////////////////////////////////////////////////////////////////////////
int BackboneStretcherShader::shade(Stroke& stroke) const
{
float l = stroke.getLength2D();
if (l <= 1.0e-6)
return 0;
StrokeInternal::StrokeVertexIterator v0 = stroke.strokeVerticesBegin();
StrokeInternal::StrokeVertexIterator v1 = v0;
++v1;
StrokeInternal::StrokeVertexIterator vn = stroke.strokeVerticesEnd();
--vn;
StrokeInternal::StrokeVertexIterator vn_1 = vn;
--vn_1;
Vec2d first((v0)->x(), (v0)->y());
Vec2d last((vn)->x(), (vn)->y());
Vec2d d1(first - Vec2d((v1)->x(), (v1)->y()));
d1.normalize();
Vec2d dn(last - Vec2d((vn_1)->x(), (vn_1)->y()));
dn.normalize();
Vec2d newFirst(first + _amount * d1);
(v0)->setPoint(newFirst[0], newFirst[1]);
Vec2d newLast(last + _amount * dn);
(vn)->setPoint(newLast[0], newLast[1]);
stroke.UpdateLength();
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
2008-04-30 15:41:54 +00:00
int SamplingShader::shade(Stroke& stroke) const
{
stroke.Resample(_sampling);
stroke.UpdateLength();
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int ExternalContourStretcherShader::shade(Stroke& stroke) const
{
//float l = stroke.getLength2D();
Interface0DIterator it;
Functions0D::Normal2DF0D fun;
StrokeVertex *sv;
for (it = stroke.verticesBegin(); !it.isEnd(); ++it) {
if (fun(it) < 0)
return -1;
Vec2f n(fun.result);
sv = dynamic_cast<StrokeVertex*>(&(*it));
Vec2d newPoint(sv->x() + _amount * n.x(), sv->y() + _amount * n.y());
sv->setPoint(newPoint[0], newPoint[1]);
}
stroke.UpdateLength();
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
//!! Bezier curve stroke shader
int BezierCurveShader::shade(Stroke& stroke) const
{
if (stroke.strokeVerticesSize() < 4)
return 0;
// Build the Bezier curve from this set of data points:
vector<Vec2d> data;
StrokeInternal::StrokeVertexIterator v = stroke.strokeVerticesBegin(), vend;
data.push_back(Vec2d(v->x(), v->y())); //first one
StrokeInternal::StrokeVertexIterator previous = v;
++v;
for (vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
if (!((fabs(v->x() - (previous)->x()) < M_EPSILON) && ((fabs(v->y() - (previous)->y()) < M_EPSILON))))
data.push_back(Vec2d(v->x(), v->y()));
previous = v;
}
// here we build the bezier curve
BezierCurve bcurve(data, _error);
// bad performances are here !!! // FIXME
vector<Vec2d> CurveVertices;
vector<BezierCurveSegment*>& bsegments = bcurve.segments();
vector<BezierCurveSegment*>::iterator s = bsegments.begin(), send;
vector<Vec2d>& segmentsVertices = (*s)->vertices();
vector<Vec2d>::iterator p, pend;
// first point
CurveVertices.push_back(segmentsVertices[0]);
for (send = bsegments.end(); s != send; ++s) {
segmentsVertices = (*s)->vertices();
p = segmentsVertices.begin();
++p;
for (pend = segmentsVertices.end(); p != pend; ++p) {
CurveVertices.push_back((*p));
}
}
// Resample the Stroke depending on the number of vertices of the bezier curve:
int originalSize = CurveVertices.size();
#if 0
float sampling = stroke.ComputeSampling(originalSize);
stroke.Resample(sampling);
#endif
stroke.Resample(originalSize);
int newsize = stroke.strokeVerticesSize();
int nExtraVertex = 0;
if (newsize < originalSize) {
cerr << "Warning: unsufficient resampling" << endl;
}
else {
nExtraVertex = newsize - originalSize;
if (nExtraVertex != 0) {
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "Bezier Shader : Stroke " << stroke.getId() << " have not been resampled" << endl;
}
}
}
// assigns the new coordinates:
p = CurveVertices.begin();
vector<Vec2d>::iterator last = p;
int n;
StrokeInternal::StrokeVertexIterator it, itend;
for (n = 0, it = stroke.strokeVerticesBegin(), itend = stroke.strokeVerticesEnd(), pend = CurveVertices.end();
(it != itend) && (p != pend);
++it, ++p, ++n)
{
it->setX(p->x());
it->setY(p->y());
last = p;
}
stroke.UpdateLength();
2008-04-30 15:41:54 +00:00
// Deal with extra vertices:
if (nExtraVertex == 0)
return 0;
// nExtraVertex should stay unassigned
vector<StrokeAttribute> attributes;
vector<StrokeVertex*> verticesToRemove;
for (int i = 0; i < nExtraVertex; ++i, ++it, ++n) {
verticesToRemove.push_back(&(*it));
if (it.isEnd()) {
// XXX Shocking! :P Shouldn't we break in this case???
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "messed up!" << endl;
}
}
}
for (it = stroke.strokeVerticesBegin(); it != itend; ++it) {
attributes.push_back(it->attribute());
}
for (vector<StrokeVertex*>::iterator vr = verticesToRemove.begin(), vrend = verticesToRemove.end();
vr != vrend;
++vr)
{
stroke.RemoveVertex(*vr);
}
vector<StrokeAttribute>::iterator a = attributes.begin(), aend = attributes.end();
int index = 0;
int index1 = (int)floor((float)originalSize / 2.0);
int index2 = index1 + nExtraVertex;
for (it = stroke.strokeVerticesBegin(), itend = stroke.strokeVerticesEnd();
(it != itend) && (a != aend);
++it)
{
(it)->setAttribute(*a);
if ((index <= index1) || (index > index2)) {
++a;
}
++index;
}
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
2008-04-30 15:41:54 +00:00
class CurvePiece
{
public:
StrokeInternal::StrokeVertexIterator _begin;
StrokeInternal::StrokeVertexIterator _last;
Vec2d A;
Vec2d B;
int size;
float _error;
CurvePiece(StrokeInternal::StrokeVertexIterator b, StrokeInternal::StrokeVertexIterator l, int iSize)
2008-04-30 15:41:54 +00:00
{
_error = 0.0f;
_begin = b;
_last = l;
A = Vec2d((_begin)->x(), (_begin)->y());
B = Vec2d((_last)->x(), (_last)->y());
size = iSize;
2008-04-30 15:41:54 +00:00
}
float error()
2008-04-30 15:41:54 +00:00
{
float maxE = 0.0f;
for (StrokeInternal::StrokeVertexIterator it = _begin; it != _last; ++it) {
Vec2d P(it->x(), it->y());
float d = GeomUtils::distPointSegment(P, A, B);
if (d > maxE)
maxE = d;
}
_error = maxE;
return maxE;
}
//! Subdivides the curve into two pieces.
// The first piece is this same object (modified)
// The second piece is returned by the method
CurvePiece *subdivide()
{
StrokeInternal::StrokeVertexIterator it = _begin;
int ns = size - 1; // number of segments (ns > 1)
int ns1 = ns / 2;
int ns2 = ns - ns1;
for (int i = 0; i < ns1; ++it, ++i);
CurvePiece *second = new CurvePiece(it, _last, ns2 + 1);
size = ns1 + 1;
_last = it;
B = Vec2d((_last)->x(), (_last)->y());
return second;
}
};
int PolygonalizationShader::shade(Stroke& stroke) const
{
vector<CurvePiece*> _pieces;
vector<CurvePiece*> _results;
vector<CurvePiece*>::iterator cp, cpend;
// Compute first approx:
StrokeInternal::StrokeVertexIterator a = stroke.strokeVerticesBegin();
StrokeInternal::StrokeVertexIterator b = stroke.strokeVerticesEnd();
--b;
int size = stroke.strokeVerticesSize();
CurvePiece *piece = new CurvePiece(a, b, size);
_pieces.push_back(piece);
while (!_pieces.empty()) {
piece = _pieces.back();
_pieces.pop_back();
if (piece->size > 2 && piece->error() > _error) {
CurvePiece *second = piece->subdivide();
_pieces.push_back(second);
_pieces.push_back(piece);
}
else {
_results.push_back(piece);
}
}
// actually modify the geometry for each piece:
for (cp = _results.begin(), cpend = _results.end(); cp != cpend; ++cp) {
a = (*cp)->_begin;
b = (*cp)->_last;
Vec2d u = (*cp)->B - (*cp)->A;
Vec2d n(u[1], -u[0]);
n.normalize();
//Vec2d n(0, 0);
float offset = ((*cp)->_error);
StrokeInternal::StrokeVertexIterator v;
for (v = a; v != b; ++v) {
v->setPoint((*cp)->A.x() + v->u() * u.x() + n.x() * offset,
(*cp)->A.y() + v->u() * u.y() + n.y() * offset);
}
#if 0
u.normalize();
(*a)->setPoint((*a)->x() - u.x() * 10, (*a)->y() - u.y() * 10);
#endif
2008-04-30 15:41:54 +00:00
}
stroke.UpdateLength();
2008-04-30 15:41:54 +00:00
// delete stuff
for (cp = _results.begin(), cpend = _results.end(); cp != cpend; ++cp) {
delete (*cp);
}
_results.clear();
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
int GuidingLinesShader::shade(Stroke& stroke) const
{
Functions1D::Normal2DF1D norm_fun;
StrokeInternal::StrokeVertexIterator a = stroke.strokeVerticesBegin();
StrokeInternal::StrokeVertexIterator b = stroke.strokeVerticesEnd();
--b;
int size = stroke.strokeVerticesSize();
CurvePiece piece(a, b, size);
Vec2d u = piece.B - piece.A;
Vec2f n(u[1], -u[0]);
n.normalize();
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
if (norm_fun(stroke) < 0)
return -1;
Vec2f strokeN(norm_fun.result);
if (n * strokeN < 0) {
n[0] = -n[0];
n[1] = -n[1];
}
float offset = (piece.error()) / 2.0f * _offset;
StrokeInternal::StrokeVertexIterator v, vend;
for (v = a, vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
v->setPoint(piece.A.x() + v->u() * u.x() + n.x() * offset,
piece.A.y() + v->u() * u.y() + n.y() * offset);
}
stroke.UpdateLength();
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
/////////////////////////////////////////
//
// Tip Remover
//
/////////////////////////////////////////
TipRemoverShader::TipRemoverShader(real tipLength) : StrokeShader()
{
_tipLength = tipLength;
}
int TipRemoverShader::shade(Stroke& stroke) const
{
int originalSize = stroke.strokeVerticesSize();
if (originalSize < 4)
return 0;
StrokeInternal::StrokeVertexIterator v, vend;
vector<StrokeVertex*> verticesToRemove;
vector<StrokeAttribute> oldAttributes;
for (v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd(); v != vend; ++v) {
if ((v->curvilinearAbscissa() < _tipLength) || (v->strokeLength() - v->curvilinearAbscissa() < _tipLength)) {
verticesToRemove.push_back(&(*v));
}
oldAttributes.push_back(v->attribute());
}
if (originalSize - verticesToRemove.size() < 2)
return 0;
vector<StrokeVertex*>::iterator sv, svend;
for (sv = verticesToRemove.begin(), svend = verticesToRemove.end(); sv != svend; ++sv) {
stroke.RemoveVertex((*sv));
}
// Resample so that our new stroke have the same number of vertices than before
stroke.Resample(originalSize);
if ((int)stroke.strokeVerticesSize() != originalSize) //soc
cerr << "Warning: resampling problem" << endl;
// assign old attributes to new stroke vertices:
vector<StrokeAttribute>::iterator a = oldAttributes.begin(), aend = oldAttributes.end();
for (v = stroke.strokeVerticesBegin(), vend = stroke.strokeVerticesEnd();
(v != vend) && (a != aend);
++v, ++a)
{
v->setAttribute(*a);
}
// we're done!
Made changes to the C++ API in order to allow for proper error propagation up to the toplevel error handler in BPY_txt_do_python_Text(). Before these changes were made, the operator() methods of predicates and functions, for example, returned a value of various types such as bool, double and Vec2f. These returned values were not capable to represent an error state in many cases. Now the operator() methods always return 0 on normal exit and -1 on error. The original returned values are stored in the "result" member variables of the predicate/function classes. This means that if we have a code fragment like below: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter)) { /* do something */ } then we have to rewrite it as follows: UnaryPredicate1D& pred; Interface1D& inter; if (pred(inter) < 0) return -1; /* an error in pred() is propagated */ if (pred.result) { /* do something */ } Suppose that pred is a user-defined predicate in Python, i.e. the predicate is likely error-prone (especially when debugging the predicate). The first code fragment shown above prevents the proper error propagation because the boolean return value of UnaryPredicate1D::operator() cannot inform the occurrence of an error to the caller; the second code fragment can. In addition to the operator() methods of predicates and functions, similar improvements have been made to all other C++ API functions and methods that are involved in the execution of user-defined Python code snippets. Changes in the signatures of functions and methods are summarized as follows (note that all subclasses of listed classes are also subject to the changes). Old signatures: virtual void Iterator::increment(); virtual void Iterator::decrement(); virtual void ChainingIterator::init(); virtual ViewEdge * ChainingIterator::traverse(const AdjacencyIterator &it); static void Operators::select(UnaryPredicate1D& pred); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static void Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static void Operators::bidirectionalChain(ChainingIterator& it); static void Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static void Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static void Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static void Operators::sort(BinaryPredicate1D& pred); static void Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual bool UnaryPredicate0D::operator()(Interface0DIterator& it); virtual bool BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual bool UnaryPredicate1D::operator()(Interface1D& inter); virtual bool BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual void StrokeShader::shade(Stroke& ioStroke) const; virtual T UnaryFunction0D::operator()(Interface0DIterator& iter); virtual T UnaryFunction1D::operator()(Interface1D& inter); New signatures: virtual int Iterator::increment(); virtual int Iterator::decrement(); virtual int ChainingIterator::init(); virtual int ChainingIterator::traverse(const AdjacencyIterator &it); static int Operators::select(UnaryPredicate1D& pred); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier); static int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred); static int Operators::bidirectionalChain(ChainingIterator& it); static int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling = 0); static int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling = 0); static int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling = 0); static int Operators::sort(BinaryPredicate1D& pred); static int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders); virtual int UnaryPredicate0D::operator()(Interface0DIterator& it); virtual int BinaryPredicate0D::operator()(Interface0D& inter1, Interface0D& inter2); virtual int UnaryPredicate1D::operator()(Interface1D& inter); virtual int BinaryPredicate1D::operator()(Interface1D& inter1, Interface1D& inter2); virtual int StrokeShader::shade(Stroke& ioStroke) const; virtual int UnaryFunction0D::operator()(Interface0DIterator& iter); virtual int UnaryFunction1D::operator()(Interface1D& inter);
2009-03-20 22:55:07 +00:00
return 0;
}
2008-04-30 15:41:54 +00:00
} // end of namespace StrokeShaders
Attempt to fix a potential name conflict between Freestyle and the compositor. A crash in the Freestyle renderer was reported by Ton on IRC with a stack trace below. Note that #2 is in Freestyle, whereas #1 is in the compositor. The problem was observed in a debug build on OS X 10.7 (gcc 4.2, openmp disabled, no llvm). ---------------------------------------------------------------------- Program received signal EXC_BAD_ACCESS, Could not access memory. Reason: 13 at address: 0x0000000000000000 [Switching to process 72386 thread 0xf303] 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 43 delete (this->m_outputsockets.back()); Current language: auto; currently c++ (gdb) where #0 0x0000000100c129f3 in NodeBase::~NodeBase (this=0x10e501c80) at COM_NodeBase.cpp:43 #1 0x0000000100c29066 in Node::~Node (this=0x10e501c80) at COM_Node.h:49 #2 0x000000010089c273 in NodeShape::~NodeShape (this=0x10e501c80) at NodeShape.cpp:43 #3 0x000000010089910b in NodeGroup::destroy (this=0x10e501da0) at NodeGroup.cpp:61 #4 0x00000001008990cd in NodeGroup::destroy (this=0x10e5014b0) at NodeGroup.cpp:59 #5 0x00000001008990cd in NodeGroup::destroy (this=0x114e18da0) at NodeGroup.cpp:59 #6 0x00000001007e6602 in Controller::ClearRootNode (this=0x114e19640) at Controller.cpp:329 #7 0x00000001007ea52e in Controller::LoadMesh (this=0x114e19640, re=0x10aba4638, srl=0x1140f5258) at Controller.cpp:302 #8 0x00000001008030ad in prepare (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:302 #9 0x000000010080457a in FRS_do_stroke_rendering (re=0x10aba4638, srl=0x1140f5258) at FRS_freestyle.cpp:600 #10 0x00000001006aeb9d in add_freestyle (re=0x10aba4638) at pipeline.c:1584 #11 0x00000001006aceb7 in do_render_3d (re=0x10aba4638) at pipeline.c:1094 #12 0x00000001006ae061 in do_render_fields_blur_3d (re=0x10aba4638) at pipeline.c:1367 #13 0x00000001006afa16 in do_render_composite_fields_blur_3d (re=0x10aba4638) at pipeline.c:1815 #14 0x00000001006b04e4 in do_render_all_options (re=0x10aba4638) at pipeline.c:2021 ---------------------------------------------------------------------- Apparently a name conflict between the two Blender modules is taking place. The present commit hence intends to address it by putting all the Freestyle C++ classes in the namespace 'Freestyle'. This revision will also prevent potential name conflicts with other Blender modules in the future. Special thanks to Lukas Toenne for the help with C++ namespace.
2013-04-09 00:46:49 +00:00
} /* namespace Freestyle */