Files
test2/intern/cycles/util/math_float3.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

498 lines
11 KiB
C
Raw Normal View History

/* SPDX-FileCopyrightText: 2011-2013 Intel Corporation
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifndef __UTIL_MATH_FLOAT3_H__
#define __UTIL_MATH_FLOAT3_H__
#ifndef __UTIL_MATH_H__
# error "Do not include this file directly, include util/types.h instead."
#endif
CCL_NAMESPACE_BEGIN
ccl_device_inline float3 zero_float3()
{
#ifdef __KERNEL_SSE__
return float3(_mm_setzero_ps());
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
ccl_device_inline float3 one_float3()
{
return make_float3(1.0f, 1.0f, 1.0f);
}
#if defined(__KERNEL_METAL__)
ccl_device_inline float3 rcp(float3 a)
{
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
}
#else
ccl_device_inline float3 operator-(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
# else
return make_float3(-a.x, -a.y, -a.z);
# endif
}
ccl_device_inline float3 operator*(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, b.m128));
# else
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
# endif
}
ccl_device_inline float3 operator*(const float3 a, const float f)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f)));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator*(const float f, const float3 a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator/(const float f, const float3 a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(f / a.x, f / a.y, f / a.z);
# endif
}
ccl_device_inline float3 operator/(const float3 a, const float f)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, _mm_set1_ps(f)));
# else
float invf = 1.0f / f;
return make_float3(a.x * invf, a.y * invf, a.z * invf);
# endif
}
ccl_device_inline float3 operator/(const float3 a, const float3 b)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, b.m128));
# else
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_add_ps(a.m128, b.m128));
# else
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 a, const float f)
{
return a + make_float3(f, f, f);
}
ccl_device_inline float3 operator-(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sub_ps(a.m128, b.m128));
# else
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
# endif
}
ccl_device_inline float3 operator-(const float3 a, const float f)
{
return a - make_float3(f, f, f);
}
ccl_device_inline float3 operator+=(float3 &a, const float3 b)
{
return a = a + b;
}
ccl_device_inline float3 operator-=(float3 &a, const float3 b)
{
return a = a - b;
}
ccl_device_inline float3 operator*=(float3 &a, const float3 b)
{
return a = a * b;
}
ccl_device_inline float3 operator*=(float3 &a, float f)
{
return a = a * f;
}
ccl_device_inline float3 operator/=(float3 &a, const float3 b)
{
return a = a / b;
}
ccl_device_inline float3 operator/=(float3 &a, float f)
{
float invf = 1.0f / f;
return a = a * invf;
}
# if !(defined(__KERNEL_METAL__) || defined(__KERNEL_CUDA__) || defined(__KERNEL_HIP__))
ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float3 b)
{
a = float3(a) * b;
return a;
}
ccl_device_inline packed_float3 operator*=(packed_float3 &a, float f)
{
a = float3(a) * f;
return a;
}
ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float3 b)
{
a = float3(a) / b;
return a;
}
ccl_device_inline packed_float3 operator/=(packed_float3 &a, float f)
{
a = float3(a) / f;
return a;
}
# endif
ccl_device_inline bool operator==(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
# else
return (a.x == b.x && a.y == b.y && a.z == b.z);
# endif
}
ccl_device_inline bool operator!=(const float3 a, const float3 b)
{
return !(a == b);
}
ccl_device_inline float dot(const float3 a, const float3 b)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
# else
return a.x * b.x + a.y * b.y + a.z * b.z;
# endif
}
#endif
ccl_device_inline float dot_xy(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b));
#else
return a.x * b.x + a.y * b.y;
#endif
}
ccl_device_inline float len(const float3 a)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
#else
return sqrtf(dot(a, a));
#endif
}
ccl_device_inline float reduce_min(float3 a)
{
return min(min(a.x, a.y), a.z);
}
ccl_device_inline float reduce_max(float3 a)
{
return max(max(a.x, a.y), a.z);
}
ccl_device_inline float len_squared(const float3 a)
{
return dot(a, a);
}
#ifndef __KERNEL_METAL__
ccl_device_inline float distance(const float3 a, const float3 b)
{
return len(a - b);
}
ccl_device_inline float3 cross(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
const float4 x = float4(a.m128);
const float4 y = shuffle<1, 2, 0, 3>(float4(b.m128));
const float4 z = float4(_mm_mul_ps(shuffle<1, 2, 0, 3>(float4(a.m128)), float4(b.m128)));
return float3(shuffle<1, 2, 0, 3>(msub(x, y, z)).m128);
# else
return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
# endif
}
ccl_device_inline float3 normalize(const float3 a)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
__m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
return float3(_mm_div_ps(a.m128, norm));
# else
return a / len(a);
# endif
}
ccl_device_inline float3 min(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_min_ps(a.m128, b.m128));
# else
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
# endif
}
ccl_device_inline float3 max(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_max_ps(a.m128, b.m128));
# else
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
# endif
}
ccl_device_inline float3 clamp(const float3 a, const float3 mn, const float3 mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float3 fabs(const float3 a)
{
# ifdef __KERNEL_SSE__
# ifdef __KERNEL_NEON__
return float3(vabsq_f32(a.m128));
# else
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
return float3(_mm_and_ps(a.m128, mask));
# endif
# else
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
# endif
}
ccl_device_inline float3 sqrt(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sqrt_ps(a));
# else
return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));
# endif
}
ccl_device_inline float3 floor(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_floor_ps(a));
# else
return make_float3(floorf(a.x), floorf(a.y), floorf(a.z));
# endif
}
ccl_device_inline float3 ceil(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_ceil_ps(a));
# else
return make_float3(ceilf(a.x), ceilf(a.y), ceilf(a.z));
# endif
}
ccl_device_inline float3 mix(const float3 a, const float3 b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 rcp(const float3 a)
{
# ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
# else
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
# endif
}
ccl_device_inline float3 saturate(float3 a)
{
return make_float3(saturatef(a.x), saturatef(a.y), saturatef(a.z));
}
ccl_device_inline float3 exp(float3 v)
{
return make_float3(expf(v.x), expf(v.y), expf(v.z));
}
ccl_device_inline float3 log(float3 v)
{
return make_float3(logf(v.x), logf(v.y), logf(v.z));
}
ccl_device_inline float3 reflect(const float3 incident, const float3 normal)
{
float3 unit_normal = normalize(normal);
return incident - 2.0f * unit_normal * dot(incident, unit_normal);
}
ccl_device_inline float3 refract(const float3 incident, const float3 normal, const float eta)
{
float k = 1.0f - eta * eta * (1.0f - dot(normal, incident) * dot(normal, incident));
if (k < 0.0f)
return zero_float3();
else
return eta * incident - (eta * dot(normal, incident) + sqrt(k)) * normal;
}
ccl_device_inline float3 faceforward(const float3 vector,
const float3 incident,
const float3 reference)
{
return (dot(reference, incident) < 0.0f) ? vector : -vector;
}
#endif
ccl_device_inline float3 project(const float3 v, const float3 v_proj)
{
float len_squared = dot(v_proj, v_proj);
return (len_squared != 0.0f) ? (dot(v, v_proj) / len_squared) * v_proj : zero_float3();
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline float3 normalize_len(const float3 a, ccl_private float *t)
{
*t = len(a);
float x = 1.0f / *t;
return a * x;
}
ccl_device_inline float3 safe_normalize(const float3 a)
{
float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : a;
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline float3 safe_normalize_len(const float3 a, ccl_private float *t)
{
*t = len(a);
return (*t != 0.0f) ? a / (*t) : a;
}
ccl_device_inline float3 safe_divide(const float3 a, const float3 b)
{
return make_float3((b.x != 0.0f) ? a.x / b.x : 0.0f,
(b.y != 0.0f) ? a.y / b.y : 0.0f,
(b.z != 0.0f) ? a.z / b.z : 0.0f);
}
ccl_device_inline float3 safe_divide(const float3 a, const float b)
{
return (b != 0.0f) ? a / b : zero_float3();
}
ccl_device_inline float3 interp(float3 a, float3 b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 sqr(float3 a)
{
return a * a;
}
ccl_device_inline bool is_zero(const float3 a)
{
#ifdef __KERNEL_SSE__
return a == make_float3(0.0f);
#else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
#endif
}
ccl_device_inline float reduce_add(const float3 a)
{
#if defined(__KERNEL_SSE__) && defined(__KERNEL_NEON__)
__m128 t = a.m128;
t[3] = 0.0f;
return vaddvq_f32(t);
#else
return (a.x + a.y + a.z);
#endif
}
ccl_device_inline float average(const float3 a)
{
return reduce_add(a) * (1.0f / 3.0f);
}
ccl_device_inline bool isequal(const float3 a, const float3 b)
{
#if defined(__KERNEL_METAL__)
return all(a == b);
#else
return a == b;
#endif
}
Nodes: add Fractal Voronoi Noise Fractal noise is the idea of evaluating the same noise function multiple times with different input parameters on each layer and then mixing the results. The individual layers are usually called octaves. The number of layers is controlled with a "Detail" slider. The "Lacunarity" input controls a factor by which each successive layer gets scaled. The existing Noise node already supports fractal noise. Now the Voronoi Noise node supports it as well. The node also has a new "Normalize" property that ensures that the output values stay in a [0.0, 1.0] range. That is except for the F2 feature where in rare cases the output may be outside that range even with "Normalize" turned on. How the individual octaves are mixed depends on the feature and output socket: - F1/Smooth F1/F2: - Distance/Color output: The individual Distance/Color octaves are first multiplied by a factor of `Roughness ^ (#layers - 1.0)` then added together to create the final output. - Position output: Each Position octave gets linearly interpolated with the combined output of the previous octaves. The Roughness input serves as an interpolation factor with 0.0 resutling in only using the combined output of the previous octaves and 1.0 resulting in only using the current highest octave. - Distance to Edge: - Distance output: The Distance octaves are mixed exactly like the Position octaves for F1/Smooth F1/F2. It should be noted that Voronoi Noise is a relatively slow noise function, especially at higher dimensions. Increasing the "Detail" makes it even slower. Therefore, when optimizing a scene one should consider trying to use simpler noise functions instead of Voronoi if the final result is close enough. Pull Request: https://projects.blender.org/blender/blender/pulls/106827
2023-06-13 09:18:12 +02:00
/* Consistent name for this would be pow, but HIP compiler crashes in name mangling. */
ccl_device_inline float3 power(float3 v, float e)
{
return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e));
}
ccl_device_inline bool isfinite_safe(float3 v)
{
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
}
ccl_device_inline float3 ensure_finite(float3 v)
{
if (!isfinite_safe(v.x))
v.x = 0.0f;
if (!isfinite_safe(v.y))
v.y = 0.0f;
if (!isfinite_safe(v.z))
v.z = 0.0f;
return v;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_FLOAT3_H__ */