Files
test2/source/blender/modifiers/intern/MOD_particleinstance.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

672 lines
21 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2005 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup modifiers
*/
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_listbase.h"
#include "BLI_math_matrix.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "BLI_rand.h"
#include "BLI_string.h"
#include "BLT_translation.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_screen_types.h"
#include "BKE_context.h"
#include "BKE_effect.h"
#include "BKE_lattice.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.hh"
#include "BKE_modifier.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_screen.hh"
#include "UI_interface.hh"
#include "UI_resources.hh"
#include "RNA_access.hh"
#include "RNA_prototypes.h"
#include "DEG_depsgraph_build.hh"
#include "DEG_depsgraph_query.hh"
#include "MOD_modifiertypes.hh"
#include "MOD_ui_common.hh"
2018-12-30 15:14:00 +11:00
static void init_data(ModifierData *md)
{
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(pimd, modifier));
MEMCPY_STRUCT_AFTER(pimd, DNA_struct_default_get(ParticleInstanceModifierData), modifier);
}
static void required_data_mask(ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
{
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
if (pimd->index_layer_name[0] != '\0' || pimd->value_layer_name[0] != '\0') {
r_cddata_masks->lmask |= CD_MASK_PROP_BYTE_COLOR;
}
}
static bool is_disabled(const Scene *scene, ModifierData *md, bool use_render_params)
{
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
ParticleSystem *psys;
/* The object type check is only needed here in case we have a placeholder
* object assigned (because the library containing the mesh is missing).
*
2019-08-31 01:19:22 +10:00
* In other cases it should be impossible to have a type mismatch.
*/
if (!pimd->ob || pimd->ob->type != OB_MESH) {
return true;
}
psys = static_cast<ParticleSystem *>(BLI_findlink(&pimd->ob->particlesystem, pimd->psys - 1));
if (psys == nullptr) {
return true;
}
/* If the psys modifier is disabled we cannot use its data.
* First look up the psys modifier from the object, then check if it is enabled.
*/
LISTBASE_FOREACH (ModifierData *, ob_md, &pimd->ob->modifiers) {
if (ob_md->type == eModifierType_ParticleSystem) {
ParticleSystemModifierData *psmd = (ParticleSystemModifierData *)ob_md;
if (psmd->psys == psys) {
int required_mode;
if (use_render_params) {
required_mode = eModifierMode_Render;
}
else {
required_mode = eModifierMode_Realtime;
}
if (!BKE_modifier_is_enabled(scene, ob_md, required_mode)) {
return true;
}
break;
}
}
}
return false;
}
static void update_depsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
if (pimd->ob != nullptr) {
DEG_add_object_relation(
ctx->node, pimd->ob, DEG_OB_COMP_TRANSFORM, "Particle Instance Modifier");
DEG_add_object_relation(
ctx->node, pimd->ob, DEG_OB_COMP_GEOMETRY, "Particle Instance Modifier");
}
}
static void foreach_ID_link(ModifierData *md, Object *ob, IDWalkFunc walk, void *user_data)
{
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
walk(user_data, ob, (ID **)&pimd->ob, IDWALK_CB_NOP);
}
static bool particle_skip(ParticleInstanceModifierData *pimd, ParticleSystem *psys, int p)
{
const bool between = (psys->part->childtype == PART_CHILD_FACES);
ParticleData *pa;
int totpart, randp, minp, maxp;
if (p >= psys->totpart) {
ChildParticle *cpa = psys->child + (p - psys->totpart);
2018-06-06 22:17:06 +02:00
pa = psys->particles + (between ? cpa->pa[0] : cpa->parent);
}
else {
pa = psys->particles + p;
}
if (pa) {
if (pa->alive == PARS_UNBORN && (pimd->flag & eParticleInstanceFlag_Unborn) == 0) {
return true;
}
if (pa->alive == PARS_ALIVE && (pimd->flag & eParticleInstanceFlag_Alive) == 0) {
return true;
}
if (pa->alive == PARS_DEAD && (pimd->flag & eParticleInstanceFlag_Dead) == 0) {
return true;
}
if (pa->flag & (PARS_UNEXIST | PARS_NO_DISP)) {
return true;
}
}
if (pimd->particle_amount == 1.0f) {
/* Early output, all particles are to be instanced. */
return false;
}
/* Randomly skip particles based on desired amount of visible particles. */
totpart = psys->totpart + psys->totchild;
/* TODO: make randomization optional? */
randp = int(psys_frand(psys, 3578 + p) * totpart) % totpart;
minp = int(totpart * pimd->particle_offset) % (totpart + 1);
maxp = int(totpart * (pimd->particle_offset + pimd->particle_amount)) % (totpart + 1);
if (maxp > minp) {
return randp < minp || randp >= maxp;
}
if (maxp < minp) {
return randp < minp && randp >= maxp;
}
return true;
}
static void store_float_in_vcol(MLoopCol *vcol, float float_value)
{
const uchar value = unit_float_to_uchar_clamp(float_value);
vcol->r = vcol->g = vcol->b = value;
vcol->a = 1.0f;
}
static Mesh *modify_mesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
Mesh *result;
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
Scene *scene = DEG_get_evaluated_scene(ctx->depsgraph);
ParticleSimulationData sim;
ParticleSystem *psys = nullptr;
ParticleData *pa = nullptr;
int totvert, faces_num, totloop, totedge;
int maxvert, maxpoly, maxloop, maxedge, part_end = 0, part_start;
int k, p, p_skip;
short track = ctx->object->trackflag % 3, trackneg, axis = pimd->axis;
float max_co = 0.0, min_co = 0.0, temp_co[3];
float *size = nullptr;
float spacemat[4][4];
const bool use_parents = pimd->flag & eParticleInstanceFlag_Parents;
const bool use_children = pimd->flag & eParticleInstanceFlag_Children;
bool between;
trackneg = ((ctx->object->trackflag > 2) ? 1 : 0);
if (pimd->ob == ctx->object) {
pimd->ob = nullptr;
return mesh;
}
if (pimd->ob) {
psys = static_cast<ParticleSystem *>(BLI_findlink(&pimd->ob->particlesystem, pimd->psys - 1));
if (psys == nullptr || psys->totpart == 0) {
return mesh;
}
}
else {
return mesh;
}
part_start = use_parents ? 0 : psys->totpart;
part_end = 0;
if (use_parents) {
part_end += psys->totpart;
}
if (use_children) {
part_end += psys->totchild;
}
if (part_end == 0) {
return mesh;
}
sim.depsgraph = ctx->depsgraph;
sim.scene = scene;
sim.ob = pimd->ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(pimd->ob, psys);
between = (psys->part->childtype == PART_CHILD_FACES);
if (pimd->flag & eParticleInstanceFlag_UseSize) {
float *si;
si = size = static_cast<float *>(MEM_calloc_arrayN(part_end, sizeof(float), __func__));
if (pimd->flag & eParticleInstanceFlag_Parents) {
for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++, si++) {
*si = pa->size;
}
}
if (pimd->flag & eParticleInstanceFlag_Children) {
ChildParticle *cpa = psys->child;
for (p = 0; p < psys->totchild; p++, cpa++, si++) {
*si = psys_get_child_size(psys, cpa, 0.0f, nullptr);
}
}
}
switch (pimd->space) {
case eParticleInstanceSpace_World:
/* particle states are in world space already */
unit_m4(spacemat);
break;
case eParticleInstanceSpace_Local:
/* get particle states in the particle object's local space */
invert_m4_m4(spacemat, pimd->ob->object_to_world);
break;
default:
/* should not happen */
BLI_assert(false);
break;
}
totvert = mesh->totvert;
faces_num = mesh->faces_num;
totloop = mesh->totloop;
totedge = mesh->totedge;
/* count particles */
maxvert = 0;
maxpoly = 0;
maxloop = 0;
maxedge = 0;
for (p = part_start; p < part_end; p++) {
if (particle_skip(pimd, psys, p)) {
continue;
}
maxvert += totvert;
maxpoly += faces_num;
maxloop += totloop;
maxedge += totedge;
}
psys_sim_data_init(&sim);
if (psys->flag & (PSYS_HAIR_DONE | PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) {
if (const std::optional<blender::Bounds<blender::float3>> bounds = mesh->bounds_min_max()) {
min_co = bounds->min[track];
max_co = bounds->max[track];
}
}
result = BKE_mesh_new_nomain_from_template(mesh, maxvert, maxedge, maxpoly, maxloop);
const blender::OffsetIndices orig_faces = mesh->faces();
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const blender::Span<int> orig_corner_verts = mesh->corner_verts();
const blender::Span<int> orig_corner_edges = mesh->corner_edges();
blender::MutableSpan<blender::float3> positions = result->vert_positions_for_write();
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
blender::MutableSpan<blender::int2> edges = result->edges_for_write();
blender::MutableSpan<int> face_offsets = result->face_offsets_for_write();
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
blender::MutableSpan<int> corner_verts = result->corner_verts_for_write();
blender::MutableSpan<int> corner_edges = result->corner_edges_for_write();
MLoopCol *mloopcols_index = static_cast<MLoopCol *>(CustomData_get_layer_named_for_write(
&result->loop_data, CD_PROP_BYTE_COLOR, pimd->index_layer_name, result->totloop));
MLoopCol *mloopcols_value = static_cast<MLoopCol *>(CustomData_get_layer_named_for_write(
&result->loop_data, CD_PROP_BYTE_COLOR, pimd->value_layer_name, result->totloop));
int *vert_part_index = nullptr;
float *vert_part_value = nullptr;
if (mloopcols_index != nullptr) {
vert_part_index = MEM_cnew_array<int>(maxvert, "vertex part index array");
}
if (mloopcols_value) {
vert_part_value = MEM_cnew_array<float>(maxvert, "vertex part value array");
}
for (p = part_start, p_skip = 0; p < part_end; p++) {
float prev_dir[3];
float frame[4]; /* frame orientation quaternion */
2018-06-06 22:17:06 +02:00
float p_random = psys_frand(psys, 77091 + 283 * p);
/* skip particle? */
if (particle_skip(pimd, psys, p)) {
continue;
}
/* set vertices coordinates */
for (k = 0; k < totvert; k++) {
ParticleKey state;
int vindex = p_skip * totvert + k;
CustomData_copy_data(&mesh->vert_data, &result->vert_data, k, vindex, 1);
if (vert_part_index != nullptr) {
vert_part_index[vindex] = p;
}
if (vert_part_value != nullptr) {
vert_part_value[vindex] = p_random;
}
/* Change orientation based on object trackflag. */
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
copy_v3_v3(temp_co, positions[vindex]);
positions[vindex][axis] = temp_co[track];
positions[vindex][(axis + 1) % 3] = temp_co[(track + 1) % 3];
positions[vindex][(axis + 2) % 3] = temp_co[(track + 2) % 3];
/* get particle state */
if ((psys->flag & (PSYS_HAIR_DONE | PSYS_KEYED) || psys->pointcache->flag & PTCACHE_BAKED) &&
(pimd->flag & eParticleInstanceFlag_Path))
{
float ran = 0.0f;
if (pimd->random_position != 0.0f) {
ran = pimd->random_position * BLI_hash_frand(psys->seed + p);
}
if (pimd->flag & eParticleInstanceFlag_KeepShape) {
state.time = pimd->position * (1.0f - ran);
}
else {
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
state.time = (positions[vindex][axis] - min_co) / (max_co - min_co) * pimd->position *
(1.0f - ran);
if (trackneg) {
state.time = 1.0f - state.time;
}
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
positions[vindex][axis] = 0.0;
}
psys_get_particle_on_path(&sim, p, &state, true);
normalize_v3(state.vel);
/* Incrementally Rotating Frame (Bishop Frame) */
if (k == 0) {
float hairmat[4][4];
float mat[3][3];
if (p < psys->totpart) {
pa = psys->particles + p;
}
else {
ChildParticle *cpa = psys->child + (p - psys->totpart);
2018-06-06 22:17:06 +02:00
pa = psys->particles + (between ? cpa->pa[0] : cpa->parent);
}
psys_mat_hair_to_global(sim.ob, sim.psmd->mesh_final, sim.psys->part->from, pa, hairmat);
copy_m3_m4(mat, hairmat);
/* to quaternion */
mat3_to_quat(frame, mat);
if (pimd->rotation > 0.0f || pimd->random_rotation > 0.0f) {
2018-06-06 22:17:06 +02:00
float angle = 2.0f * M_PI *
(pimd->rotation +
pimd->random_rotation * (psys_frand(psys, 19957323 + p) - 0.5f));
const float eul[3] = {0.0f, 0.0f, angle};
float rot[4];
eul_to_quat(rot, eul);
mul_qt_qtqt(frame, frame, rot);
}
/* NOTE: direction is same as normal vector currently,
* but best to keep this separate so the frame can be
* rotated later if necessary
*/
copy_v3_v3(prev_dir, state.vel);
}
else {
float rot[4];
/* incrementally rotate along bend direction */
rotation_between_vecs_to_quat(rot, prev_dir, state.vel);
mul_qt_qtqt(frame, rot, frame);
copy_v3_v3(prev_dir, state.vel);
}
copy_qt_qt(state.rot, frame);
#if 0
/* Absolute Frame (Frenet Frame) */
if (state.vel[axis] < -0.9999f || state.vel[axis] > 0.9999f) {
unit_qt(state.rot);
}
else {
float cross[3];
float temp[3] = {0.0f, 0.0f, 0.0f};
temp[axis] = 1.0f;
cross_v3_v3v3(cross, temp, state.vel);
/* state.vel[axis] is the only component surviving from a dot product with the axis */
axis_angle_to_quat(state.rot, cross, saacos(state.vel[axis]));
}
#endif
}
else {
state.time = -1.0;
psys_get_particle_state(&sim, p, &state, true);
}
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
mul_qt_v3(state.rot, positions[vindex]);
if (pimd->flag & eParticleInstanceFlag_UseSize) {
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
mul_v3_fl(positions[vindex], size[p]);
}
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
add_v3_v3(positions[vindex], state.co);
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
mul_m4_v3(spacemat, positions[vindex]);
}
/* Create edges and adjust edge vertex indices. */
CustomData_copy_data(&mesh->edge_data, &result->edge_data, 0, p_skip * totedge, totedge);
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
blender::int2 *edge = &edges[p_skip * totedge];
for (k = 0; k < totedge; k++, edge++) {
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
(*edge)[0] += p_skip * totvert;
(*edge)[1] += p_skip * totvert;
}
/* create faces and loops */
for (k = 0; k < faces_num; k++) {
const blender::IndexRange in_face = orig_faces[k];
CustomData_copy_data(&mesh->face_data, &result->face_data, k, p_skip * faces_num + k, 1);
const int dst_face_start = in_face.start() + p_skip * totloop;
face_offsets[p_skip * faces_num + k] = dst_face_start;
{
int orig_corner_i = in_face.start();
int dst_corner_i = dst_face_start;
int j = in_face.size();
CustomData_copy_data(
&mesh->loop_data, &result->loop_data, in_face.start(), dst_face_start, j);
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
for (; j; j--, orig_corner_i++, dst_corner_i++) {
corner_verts[dst_corner_i] = orig_corner_verts[orig_corner_i] + (p_skip * totvert);
corner_edges[dst_corner_i] = orig_corner_edges[orig_corner_i] + (p_skip * totedge);
const int vert = corner_verts[dst_corner_i];
if (mloopcols_index != nullptr) {
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int part_index = vert_part_index[vert];
store_float_in_vcol(&mloopcols_index[dst_corner_i],
float(part_index) / float(psys->totpart - 1));
}
if (mloopcols_value != nullptr) {
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const float part_value = vert_part_value[vert];
store_float_in_vcol(&mloopcols_value[dst_corner_i], part_value);
}
}
}
}
p_skip++;
}
psys_sim_data_free(&sim);
if (size) {
MEM_freeN(size);
}
MEM_SAFE_FREE(vert_part_index);
MEM_SAFE_FREE(vert_part_value);
return result;
}
static void panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *row;
uiLayout *layout = panel->layout;
const eUI_Item_Flag toggles_flag = UI_ITEM_R_TOGGLE | UI_ITEM_R_FORCE_BLANK_DECORATE;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
PointerRNA particle_obj_ptr = RNA_pointer_get(ptr, "object");
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "object", UI_ITEM_NONE, nullptr, ICON_NONE);
if (!RNA_pointer_is_null(&particle_obj_ptr)) {
uiItemPointerR(layout,
ptr,
"particle_system",
&particle_obj_ptr,
"particle_systems",
IFACE_("Particle System"),
ICON_NONE);
}
else {
uiItemR(
layout, ptr, "particle_system_index", UI_ITEM_NONE, IFACE_("Particle System"), ICON_NONE);
}
uiItemS(layout);
row = uiLayoutRowWithHeading(layout, true, IFACE_("Create Instances"));
uiItemR(row, ptr, "use_normal", toggles_flag, nullptr, ICON_NONE);
uiItemR(row, ptr, "use_children", toggles_flag, nullptr, ICON_NONE);
uiItemR(row, ptr, "use_size", toggles_flag, nullptr, ICON_NONE);
row = uiLayoutRowWithHeading(layout, true, IFACE_("Show"));
uiItemR(row, ptr, "show_alive", toggles_flag, nullptr, ICON_NONE);
uiItemR(row, ptr, "show_dead", toggles_flag, nullptr, ICON_NONE);
uiItemR(row, ptr, "show_unborn", toggles_flag, nullptr, ICON_NONE);
uiItemR(layout, ptr, "particle_amount", UI_ITEM_NONE, IFACE_("Amount"), ICON_NONE);
uiItemR(layout, ptr, "particle_offset", UI_ITEM_NONE, IFACE_("Offset"), ICON_NONE);
uiItemS(layout);
uiItemR(layout, ptr, "space", UI_ITEM_NONE, IFACE_("Coordinate Space"), ICON_NONE);
row = uiLayoutRow(layout, true);
uiItemR(row, ptr, "axis", UI_ITEM_R_EXPAND, nullptr, ICON_NONE);
modifier_panel_end(layout, ptr);
}
static void path_panel_draw_header(const bContext * /*C*/, Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, nullptr);
uiItemR(layout, ptr, "use_path", UI_ITEM_NONE, IFACE_("Create Along Paths"), ICON_NONE);
}
static void path_panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *col;
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
uiLayoutSetPropSep(layout, true);
uiLayoutSetActive(layout, RNA_boolean_get(ptr, "use_path"));
col = uiLayoutColumn(layout, true);
uiItemR(col, ptr, "position", UI_ITEM_R_SLIDER, nullptr, ICON_NONE);
uiItemR(col, ptr, "random_position", UI_ITEM_R_SLIDER, IFACE_("Random"), ICON_NONE);
col = uiLayoutColumn(layout, true);
uiItemR(col, ptr, "rotation", UI_ITEM_R_SLIDER, nullptr, ICON_NONE);
uiItemR(col, ptr, "random_rotation", UI_ITEM_R_SLIDER, IFACE_("Random"), ICON_NONE);
uiItemR(layout, ptr, "use_preserve_shape", UI_ITEM_NONE, nullptr, ICON_NONE);
}
static void layers_panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *col;
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
PointerRNA obj_data_ptr = RNA_pointer_get(&ob_ptr, "data");
uiLayoutSetPropSep(layout, true);
col = uiLayoutColumn(layout, false);
uiItemPointerR(
col, ptr, "index_layer_name", &obj_data_ptr, "vertex_colors", IFACE_("Index"), ICON_NONE);
uiItemPointerR(
col, ptr, "value_layer_name", &obj_data_ptr, "vertex_colors", IFACE_("Value"), ICON_NONE);
}
static void panel_register(ARegionType *region_type)
{
PanelType *panel_type = modifier_panel_register(
region_type, eModifierType_ParticleInstance, panel_draw);
modifier_subpanel_register(
region_type, "paths", "", path_panel_draw_header, path_panel_draw, panel_type);
modifier_subpanel_register(
region_type, "layers", "Layers", nullptr, layers_panel_draw, panel_type);
}
ModifierTypeInfo modifierType_ParticleInstance = {
/*idname*/ "ParticleInstance",
/*name*/ N_("ParticleInstance"),
/*struct_name*/ "ParticleInstanceModifierData",
/*struct_size*/ sizeof(ParticleInstanceModifierData),
/*srna*/ &RNA_ParticleInstanceModifier,
/*type*/ eModifierTypeType_Constructive,
/*flags*/ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsMapping |
eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode,
/*icon*/ ICON_MOD_PARTICLE_INSTANCE,
/*copy_data*/ BKE_modifier_copydata_generic,
/*deform_verts*/ nullptr,
/*deform_matrices*/ nullptr,
/*deform_verts_EM*/ nullptr,
/*deform_matrices_EM*/ nullptr,
/*modify_mesh*/ modify_mesh,
/*modify_geometry_set*/ nullptr,
/*init_data*/ init_data,
/*required_data_mask*/ required_data_mask,
/*free_data*/ nullptr,
/*is_disabled*/ is_disabled,
/*update_depsgraph*/ update_depsgraph,
/*depends_on_time*/ nullptr,
/*depends_on_normals*/ nullptr,
/*foreach_ID_link*/ foreach_ID_link,
/*foreach_tex_link*/ nullptr,
/*free_runtime_data*/ nullptr,
/*panel_register*/ panel_register,
/*blend_write*/ nullptr,
/*blend_read*/ nullptr,
};