ClangFormat: apply to source, most of intern
Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
This commit is contained in:
@@ -19,25 +19,25 @@
|
||||
# ***** END GPL LICENSE BLOCK *****
|
||||
|
||||
set(INC
|
||||
.
|
||||
.
|
||||
)
|
||||
|
||||
set(INC_SYS
|
||||
${EIGEN3_INCLUDE_DIRS}
|
||||
${EIGEN3_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
set(SRC
|
||||
eigen_capi.h
|
||||
eigen_capi.h
|
||||
|
||||
intern/eigenvalues.cc
|
||||
intern/linear_solver.cc
|
||||
intern/matrix.cc
|
||||
intern/svd.cc
|
||||
intern/eigenvalues.cc
|
||||
intern/linear_solver.cc
|
||||
intern/matrix.cc
|
||||
intern/svd.cc
|
||||
|
||||
intern/eigenvalues.h
|
||||
intern/linear_solver.h
|
||||
intern/matrix.h
|
||||
intern/svd.h
|
||||
intern/eigenvalues.h
|
||||
intern/linear_solver.h
|
||||
intern/matrix.h
|
||||
intern/svd.h
|
||||
)
|
||||
|
||||
set(LIB
|
||||
|
||||
@@ -25,4 +25,4 @@
|
||||
#include "intern/matrix.h"
|
||||
#include "intern/svd.h"
|
||||
|
||||
#endif /* __EIGEN_C_API_H__ */
|
||||
#endif /* __EIGEN_C_API_H__ */
|
||||
|
||||
@@ -32,32 +32,35 @@
|
||||
|
||||
using Eigen::SelfAdjointEigenSolver;
|
||||
|
||||
using Eigen::Map;
|
||||
using Eigen::MatrixXf;
|
||||
using Eigen::VectorXf;
|
||||
using Eigen::Map;
|
||||
|
||||
using Eigen::Success;
|
||||
|
||||
bool EIG_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors)
|
||||
bool EIG_self_adjoint_eigen_solve(const int size,
|
||||
const float *matrix,
|
||||
float *r_eigen_values,
|
||||
float *r_eigen_vectors)
|
||||
{
|
||||
SelfAdjointEigenSolver<MatrixXf> eigen_solver;
|
||||
SelfAdjointEigenSolver<MatrixXf> eigen_solver;
|
||||
|
||||
/* Blender and Eigen matrices are both column-major. */
|
||||
eigen_solver.compute(Map<MatrixXf>((float *)matrix, size, size));
|
||||
/* Blender and Eigen matrices are both column-major. */
|
||||
eigen_solver.compute(Map<MatrixXf>((float *)matrix, size, size));
|
||||
|
||||
if (eigen_solver.info() != Success) {
|
||||
return false;
|
||||
}
|
||||
if (eigen_solver.info() != Success) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (r_eigen_values) {
|
||||
Map<VectorXf>(r_eigen_values, size) = eigen_solver.eigenvalues().transpose();
|
||||
}
|
||||
if (r_eigen_values) {
|
||||
Map<VectorXf>(r_eigen_values, size) = eigen_solver.eigenvalues().transpose();
|
||||
}
|
||||
|
||||
if (r_eigen_vectors) {
|
||||
Map<MatrixXf>(r_eigen_vectors, size, size) = eigen_solver.eigenvectors();
|
||||
}
|
||||
if (r_eigen_vectors) {
|
||||
Map<MatrixXf>(r_eigen_vectors, size, size) = eigen_solver.eigenvectors();
|
||||
}
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif /* __EIGEN3_EIGENVALUES_C_API_CC__ */
|
||||
#endif /* __EIGEN3_EIGENVALUES_C_API_CC__ */
|
||||
|
||||
@@ -24,10 +24,13 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool EIG_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors);
|
||||
bool EIG_self_adjoint_eigen_solve(const int size,
|
||||
const float *matrix,
|
||||
float *r_eigen_values,
|
||||
float *r_eigen_vectors);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __EIGEN3_EIGENVALUES_C_API_H__ */
|
||||
#endif /* __EIGEN3_EIGENVALUES_C_API_H__ */
|
||||
|
||||
@@ -41,326 +41,318 @@ typedef Eigen::Triplet<double> EigenTriplet;
|
||||
|
||||
/* Linear Solver data structure */
|
||||
|
||||
struct LinearSolver
|
||||
{
|
||||
struct Coeff
|
||||
{
|
||||
Coeff()
|
||||
{
|
||||
index = 0;
|
||||
value = 0.0;
|
||||
}
|
||||
struct LinearSolver {
|
||||
struct Coeff {
|
||||
Coeff()
|
||||
{
|
||||
index = 0;
|
||||
value = 0.0;
|
||||
}
|
||||
|
||||
int index;
|
||||
double value;
|
||||
};
|
||||
int index;
|
||||
double value;
|
||||
};
|
||||
|
||||
struct Variable
|
||||
{
|
||||
Variable()
|
||||
{
|
||||
memset(value, 0, sizeof(value));
|
||||
locked = false;
|
||||
index = 0;
|
||||
}
|
||||
struct Variable {
|
||||
Variable()
|
||||
{
|
||||
memset(value, 0, sizeof(value));
|
||||
locked = false;
|
||||
index = 0;
|
||||
}
|
||||
|
||||
double value[4];
|
||||
bool locked;
|
||||
int index;
|
||||
std::vector<Coeff> a;
|
||||
};
|
||||
double value[4];
|
||||
bool locked;
|
||||
int index;
|
||||
std::vector<Coeff> a;
|
||||
};
|
||||
|
||||
enum State
|
||||
{
|
||||
STATE_VARIABLES_CONSTRUCT,
|
||||
STATE_MATRIX_CONSTRUCT,
|
||||
STATE_MATRIX_SOLVED
|
||||
};
|
||||
enum State { STATE_VARIABLES_CONSTRUCT, STATE_MATRIX_CONSTRUCT, STATE_MATRIX_SOLVED };
|
||||
|
||||
LinearSolver(int num_rows_, int num_variables_, int num_rhs_, bool lsq_)
|
||||
{
|
||||
assert(num_variables_ > 0);
|
||||
assert(num_rhs_ <= 4);
|
||||
LinearSolver(int num_rows_, int num_variables_, int num_rhs_, bool lsq_)
|
||||
{
|
||||
assert(num_variables_ > 0);
|
||||
assert(num_rhs_ <= 4);
|
||||
|
||||
state = STATE_VARIABLES_CONSTRUCT;
|
||||
m = 0;
|
||||
n = 0;
|
||||
sparseLU = NULL;
|
||||
num_variables = num_variables_;
|
||||
num_rhs = num_rhs_;
|
||||
num_rows = num_rows_;
|
||||
least_squares = lsq_;
|
||||
state = STATE_VARIABLES_CONSTRUCT;
|
||||
m = 0;
|
||||
n = 0;
|
||||
sparseLU = NULL;
|
||||
num_variables = num_variables_;
|
||||
num_rhs = num_rhs_;
|
||||
num_rows = num_rows_;
|
||||
least_squares = lsq_;
|
||||
|
||||
variable.resize(num_variables);
|
||||
}
|
||||
variable.resize(num_variables);
|
||||
}
|
||||
|
||||
~LinearSolver()
|
||||
{
|
||||
delete sparseLU;
|
||||
}
|
||||
~LinearSolver()
|
||||
{
|
||||
delete sparseLU;
|
||||
}
|
||||
|
||||
State state;
|
||||
State state;
|
||||
|
||||
int n;
|
||||
int m;
|
||||
int n;
|
||||
int m;
|
||||
|
||||
std::vector<EigenTriplet> Mtriplets;
|
||||
EigenSparseMatrix M;
|
||||
EigenSparseMatrix MtM;
|
||||
std::vector<EigenVectorX> b;
|
||||
std::vector<EigenVectorX> x;
|
||||
std::vector<EigenTriplet> Mtriplets;
|
||||
EigenSparseMatrix M;
|
||||
EigenSparseMatrix MtM;
|
||||
std::vector<EigenVectorX> b;
|
||||
std::vector<EigenVectorX> x;
|
||||
|
||||
EigenSparseLU *sparseLU;
|
||||
EigenSparseLU *sparseLU;
|
||||
|
||||
int num_variables;
|
||||
std::vector<Variable> variable;
|
||||
int num_variables;
|
||||
std::vector<Variable> variable;
|
||||
|
||||
int num_rows;
|
||||
int num_rhs;
|
||||
int num_rows;
|
||||
int num_rhs;
|
||||
|
||||
bool least_squares;
|
||||
bool least_squares;
|
||||
};
|
||||
|
||||
LinearSolver *EIG_linear_solver_new(int num_rows, int num_columns, int num_rhs)
|
||||
{
|
||||
return new LinearSolver(num_rows, num_columns, num_rhs, false);
|
||||
return new LinearSolver(num_rows, num_columns, num_rhs, false);
|
||||
}
|
||||
|
||||
LinearSolver *EIG_linear_least_squares_solver_new(int num_rows, int num_columns, int num_rhs)
|
||||
{
|
||||
return new LinearSolver(num_rows, num_columns, num_rhs, true);
|
||||
return new LinearSolver(num_rows, num_columns, num_rhs, true);
|
||||
}
|
||||
|
||||
void EIG_linear_solver_delete(LinearSolver *solver)
|
||||
{
|
||||
delete solver;
|
||||
delete solver;
|
||||
}
|
||||
|
||||
/* Variables */
|
||||
|
||||
void EIG_linear_solver_variable_set(LinearSolver *solver, int rhs, int index, double value)
|
||||
{
|
||||
solver->variable[index].value[rhs] = value;
|
||||
solver->variable[index].value[rhs] = value;
|
||||
}
|
||||
|
||||
double EIG_linear_solver_variable_get(LinearSolver *solver, int rhs, int index)
|
||||
{
|
||||
return solver->variable[index].value[rhs];
|
||||
return solver->variable[index].value[rhs];
|
||||
}
|
||||
|
||||
void EIG_linear_solver_variable_lock(LinearSolver *solver, int index)
|
||||
{
|
||||
if (!solver->variable[index].locked) {
|
||||
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
solver->variable[index].locked = true;
|
||||
}
|
||||
if (!solver->variable[index].locked) {
|
||||
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
solver->variable[index].locked = true;
|
||||
}
|
||||
}
|
||||
|
||||
void EIG_linear_solver_variable_unlock(LinearSolver *solver, int index)
|
||||
{
|
||||
if (solver->variable[index].locked) {
|
||||
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
solver->variable[index].locked = false;
|
||||
}
|
||||
if (solver->variable[index].locked) {
|
||||
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
solver->variable[index].locked = false;
|
||||
}
|
||||
}
|
||||
|
||||
static void linear_solver_variables_to_vector(LinearSolver *solver)
|
||||
{
|
||||
int num_rhs = solver->num_rhs;
|
||||
int num_rhs = solver->num_rhs;
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable* v = &solver->variable[i];
|
||||
if (!v->locked) {
|
||||
for (int j = 0; j < num_rhs; j++)
|
||||
solver->x[j][v->index] = v->value[j];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable *v = &solver->variable[i];
|
||||
if (!v->locked) {
|
||||
for (int j = 0; j < num_rhs; j++)
|
||||
solver->x[j][v->index] = v->value[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void linear_solver_vector_to_variables(LinearSolver *solver)
|
||||
{
|
||||
int num_rhs = solver->num_rhs;
|
||||
int num_rhs = solver->num_rhs;
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable* v = &solver->variable[i];
|
||||
if (!v->locked) {
|
||||
for (int j = 0; j < num_rhs; j++)
|
||||
v->value[j] = solver->x[j][v->index];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable *v = &solver->variable[i];
|
||||
if (!v->locked) {
|
||||
for (int j = 0; j < num_rhs; j++)
|
||||
v->value[j] = solver->x[j][v->index];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Matrix */
|
||||
|
||||
static void linear_solver_ensure_matrix_construct(LinearSolver *solver)
|
||||
{
|
||||
/* transition to matrix construction if necessary */
|
||||
if (solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT) {
|
||||
int n = 0;
|
||||
/* transition to matrix construction if necessary */
|
||||
if (solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT) {
|
||||
int n = 0;
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
if (solver->variable[i].locked)
|
||||
solver->variable[i].index = ~0;
|
||||
else
|
||||
solver->variable[i].index = n++;
|
||||
}
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
if (solver->variable[i].locked)
|
||||
solver->variable[i].index = ~0;
|
||||
else
|
||||
solver->variable[i].index = n++;
|
||||
}
|
||||
|
||||
int m = (solver->num_rows == 0)? n: solver->num_rows;
|
||||
int m = (solver->num_rows == 0) ? n : solver->num_rows;
|
||||
|
||||
solver->m = m;
|
||||
solver->n = n;
|
||||
solver->m = m;
|
||||
solver->n = n;
|
||||
|
||||
assert(solver->least_squares || m == n);
|
||||
assert(solver->least_squares || m == n);
|
||||
|
||||
/* reserve reasonable estimate */
|
||||
solver->Mtriplets.clear();
|
||||
solver->Mtriplets.reserve(std::max(m, n)*3);
|
||||
/* reserve reasonable estimate */
|
||||
solver->Mtriplets.clear();
|
||||
solver->Mtriplets.reserve(std::max(m, n) * 3);
|
||||
|
||||
solver->b.resize(solver->num_rhs);
|
||||
solver->x.resize(solver->num_rhs);
|
||||
solver->b.resize(solver->num_rhs);
|
||||
solver->x.resize(solver->num_rhs);
|
||||
|
||||
for (int i = 0; i < solver->num_rhs; i++) {
|
||||
solver->b[i].setZero(m);
|
||||
solver->x[i].setZero(n);
|
||||
}
|
||||
for (int i = 0; i < solver->num_rhs; i++) {
|
||||
solver->b[i].setZero(m);
|
||||
solver->x[i].setZero(n);
|
||||
}
|
||||
|
||||
linear_solver_variables_to_vector(solver);
|
||||
linear_solver_variables_to_vector(solver);
|
||||
|
||||
solver->state = LinearSolver::STATE_MATRIX_CONSTRUCT;
|
||||
}
|
||||
solver->state = LinearSolver::STATE_MATRIX_CONSTRUCT;
|
||||
}
|
||||
}
|
||||
|
||||
void EIG_linear_solver_matrix_add(LinearSolver *solver, int row, int col, double value)
|
||||
{
|
||||
if (solver->state == LinearSolver::STATE_MATRIX_SOLVED)
|
||||
return;
|
||||
if (solver->state == LinearSolver::STATE_MATRIX_SOLVED)
|
||||
return;
|
||||
|
||||
linear_solver_ensure_matrix_construct(solver);
|
||||
linear_solver_ensure_matrix_construct(solver);
|
||||
|
||||
if (!solver->least_squares && solver->variable[row].locked);
|
||||
else if (solver->variable[col].locked) {
|
||||
if (!solver->least_squares)
|
||||
row = solver->variable[row].index;
|
||||
if (!solver->least_squares && solver->variable[row].locked)
|
||||
;
|
||||
else if (solver->variable[col].locked) {
|
||||
if (!solver->least_squares)
|
||||
row = solver->variable[row].index;
|
||||
|
||||
LinearSolver::Coeff coeff;
|
||||
coeff.index = row;
|
||||
coeff.value = value;
|
||||
solver->variable[col].a.push_back(coeff);
|
||||
}
|
||||
else {
|
||||
if (!solver->least_squares)
|
||||
row = solver->variable[row].index;
|
||||
col = solver->variable[col].index;
|
||||
LinearSolver::Coeff coeff;
|
||||
coeff.index = row;
|
||||
coeff.value = value;
|
||||
solver->variable[col].a.push_back(coeff);
|
||||
}
|
||||
else {
|
||||
if (!solver->least_squares)
|
||||
row = solver->variable[row].index;
|
||||
col = solver->variable[col].index;
|
||||
|
||||
/* direct insert into matrix is too slow, so use triplets */
|
||||
EigenTriplet triplet(row, col, value);
|
||||
solver->Mtriplets.push_back(triplet);
|
||||
}
|
||||
/* direct insert into matrix is too slow, so use triplets */
|
||||
EigenTriplet triplet(row, col, value);
|
||||
solver->Mtriplets.push_back(triplet);
|
||||
}
|
||||
}
|
||||
|
||||
/* Right hand side */
|
||||
|
||||
void EIG_linear_solver_right_hand_side_add(LinearSolver *solver, int rhs, int index, double value)
|
||||
{
|
||||
linear_solver_ensure_matrix_construct(solver);
|
||||
linear_solver_ensure_matrix_construct(solver);
|
||||
|
||||
if (solver->least_squares) {
|
||||
solver->b[rhs][index] += value;
|
||||
}
|
||||
else if (!solver->variable[index].locked) {
|
||||
index = solver->variable[index].index;
|
||||
solver->b[rhs][index] += value;
|
||||
}
|
||||
if (solver->least_squares) {
|
||||
solver->b[rhs][index] += value;
|
||||
}
|
||||
else if (!solver->variable[index].locked) {
|
||||
index = solver->variable[index].index;
|
||||
solver->b[rhs][index] += value;
|
||||
}
|
||||
}
|
||||
|
||||
/* Solve */
|
||||
|
||||
bool EIG_linear_solver_solve(LinearSolver *solver)
|
||||
{
|
||||
/* nothing to solve, perhaps all variables were locked */
|
||||
if (solver->m == 0 || solver->n == 0)
|
||||
return true;
|
||||
/* nothing to solve, perhaps all variables were locked */
|
||||
if (solver->m == 0 || solver->n == 0)
|
||||
return true;
|
||||
|
||||
bool result = true;
|
||||
bool result = true;
|
||||
|
||||
assert(solver->state != LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
assert(solver->state != LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
|
||||
if (solver->state == LinearSolver::STATE_MATRIX_CONSTRUCT) {
|
||||
/* create matrix from triplets */
|
||||
solver->M.resize(solver->m, solver->n);
|
||||
solver->M.setFromTriplets(solver->Mtriplets.begin(), solver->Mtriplets.end());
|
||||
solver->Mtriplets.clear();
|
||||
if (solver->state == LinearSolver::STATE_MATRIX_CONSTRUCT) {
|
||||
/* create matrix from triplets */
|
||||
solver->M.resize(solver->m, solver->n);
|
||||
solver->M.setFromTriplets(solver->Mtriplets.begin(), solver->Mtriplets.end());
|
||||
solver->Mtriplets.clear();
|
||||
|
||||
/* create least squares matrix */
|
||||
if (solver->least_squares)
|
||||
solver->MtM = solver->M.transpose() * solver->M;
|
||||
/* create least squares matrix */
|
||||
if (solver->least_squares)
|
||||
solver->MtM = solver->M.transpose() * solver->M;
|
||||
|
||||
/* convert M to compressed column format */
|
||||
EigenSparseMatrix& M = (solver->least_squares)? solver->MtM: solver->M;
|
||||
M.makeCompressed();
|
||||
/* convert M to compressed column format */
|
||||
EigenSparseMatrix &M = (solver->least_squares) ? solver->MtM : solver->M;
|
||||
M.makeCompressed();
|
||||
|
||||
/* perform sparse LU factorization */
|
||||
EigenSparseLU *sparseLU = new EigenSparseLU();
|
||||
solver->sparseLU = sparseLU;
|
||||
/* perform sparse LU factorization */
|
||||
EigenSparseLU *sparseLU = new EigenSparseLU();
|
||||
solver->sparseLU = sparseLU;
|
||||
|
||||
sparseLU->compute(M);
|
||||
result = (sparseLU->info() == Eigen::Success);
|
||||
sparseLU->compute(M);
|
||||
result = (sparseLU->info() == Eigen::Success);
|
||||
|
||||
solver->state = LinearSolver::STATE_MATRIX_SOLVED;
|
||||
}
|
||||
solver->state = LinearSolver::STATE_MATRIX_SOLVED;
|
||||
}
|
||||
|
||||
if (result) {
|
||||
/* solve for each right hand side */
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
|
||||
/* modify for locked variables */
|
||||
EigenVectorX& b = solver->b[rhs];
|
||||
if (result) {
|
||||
/* solve for each right hand side */
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
|
||||
/* modify for locked variables */
|
||||
EigenVectorX &b = solver->b[rhs];
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable *variable = &solver->variable[i];
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable *variable = &solver->variable[i];
|
||||
|
||||
if (variable->locked) {
|
||||
std::vector<LinearSolver::Coeff>& a = variable->a;
|
||||
if (variable->locked) {
|
||||
std::vector<LinearSolver::Coeff> &a = variable->a;
|
||||
|
||||
for (int j = 0; j < a.size(); j++)
|
||||
b[a[j].index] -= a[j].value*variable->value[rhs];
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < a.size(); j++)
|
||||
b[a[j].index] -= a[j].value * variable->value[rhs];
|
||||
}
|
||||
}
|
||||
|
||||
/* solve */
|
||||
if (solver->least_squares) {
|
||||
EigenVectorX Mtb = solver->M.transpose() * b;
|
||||
solver->x[rhs] = solver->sparseLU->solve(Mtb);
|
||||
}
|
||||
else {
|
||||
EigenVectorX& b = solver->b[rhs];
|
||||
solver->x[rhs] = solver->sparseLU->solve(b);
|
||||
}
|
||||
/* solve */
|
||||
if (solver->least_squares) {
|
||||
EigenVectorX Mtb = solver->M.transpose() * b;
|
||||
solver->x[rhs] = solver->sparseLU->solve(Mtb);
|
||||
}
|
||||
else {
|
||||
EigenVectorX &b = solver->b[rhs];
|
||||
solver->x[rhs] = solver->sparseLU->solve(b);
|
||||
}
|
||||
|
||||
if (solver->sparseLU->info() != Eigen::Success)
|
||||
result = false;
|
||||
}
|
||||
if (solver->sparseLU->info() != Eigen::Success)
|
||||
result = false;
|
||||
}
|
||||
|
||||
if (result)
|
||||
linear_solver_vector_to_variables(solver);
|
||||
}
|
||||
if (result)
|
||||
linear_solver_vector_to_variables(solver);
|
||||
}
|
||||
|
||||
/* clear for next solve */
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
|
||||
solver->b[rhs].setZero(solver->m);
|
||||
/* clear for next solve */
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
|
||||
solver->b[rhs].setZero(solver->m);
|
||||
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Debugging */
|
||||
|
||||
void EIG_linear_solver_print_matrix(LinearSolver *solver)
|
||||
{
|
||||
std::cout << "A:" << solver->M << std::endl;
|
||||
std::cout << "A:" << solver->M << std::endl;
|
||||
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
|
||||
std::cout << "b " << rhs << ":" << solver->b[rhs] << std::endl;
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
|
||||
std::cout << "b " << rhs << ":" << solver->b[rhs] << std::endl;
|
||||
|
||||
if (solver->MtM.rows() && solver->MtM.cols())
|
||||
std::cout << "AtA:" << solver->MtM << std::endl;
|
||||
if (solver->MtM.rows() && solver->MtM.cols())
|
||||
std::cout << "AtA:" << solver->MtM << std::endl;
|
||||
}
|
||||
|
||||
|
||||
@@ -34,15 +34,11 @@ extern "C" {
|
||||
|
||||
typedef struct LinearSolver LinearSolver;
|
||||
|
||||
LinearSolver *EIG_linear_solver_new(
|
||||
int num_rows,
|
||||
int num_columns,
|
||||
int num_right_hand_sides);
|
||||
LinearSolver *EIG_linear_solver_new(int num_rows, int num_columns, int num_right_hand_sides);
|
||||
|
||||
LinearSolver *EIG_linear_least_squares_solver_new(
|
||||
int num_rows,
|
||||
int num_columns,
|
||||
int num_right_hand_sides);
|
||||
LinearSolver *EIG_linear_least_squares_solver_new(int num_rows,
|
||||
int num_columns,
|
||||
int num_right_hand_sides);
|
||||
|
||||
void EIG_linear_solver_delete(LinearSolver *solver);
|
||||
|
||||
@@ -69,4 +65,3 @@ void EIG_linear_solver_print_matrix(LinearSolver *solver);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
@@ -25,7 +25,7 @@
|
||||
# pragma GCC diagnostic ignored "-Wlogical-op"
|
||||
#endif
|
||||
|
||||
#ifdef __EIGEN3_MATRIX_C_API_CC__ /* quiet warning */
|
||||
#ifdef __EIGEN3_MATRIX_C_API_CC__ /* quiet warning */
|
||||
#endif
|
||||
|
||||
#include <Eigen/Core>
|
||||
@@ -38,15 +38,15 @@ using Eigen::Matrix4f;
|
||||
|
||||
bool EIG_invert_m4_m4(float inverse[4][4], const float matrix[4][4])
|
||||
{
|
||||
Map<Matrix4f> M = Map<Matrix4f>((float*)matrix);
|
||||
Matrix4f R;
|
||||
bool invertible = true;
|
||||
M.computeInverseWithCheck(R, invertible, 0.0f);
|
||||
if (!invertible) {
|
||||
R = R.Zero();
|
||||
}
|
||||
memcpy(inverse, R.data(), sizeof(float)*4*4);
|
||||
return invertible;
|
||||
Map<Matrix4f> M = Map<Matrix4f>((float *)matrix);
|
||||
Matrix4f R;
|
||||
bool invertible = true;
|
||||
M.computeInverseWithCheck(R, invertible, 0.0f);
|
||||
if (!invertible) {
|
||||
R = R.Zero();
|
||||
}
|
||||
memcpy(inverse, R.data(), sizeof(float) * 4 * 4);
|
||||
return invertible;
|
||||
}
|
||||
|
||||
#endif /* __EIGEN3_MATRIX_C_API_CC__ */
|
||||
#endif /* __EIGEN3_MATRIX_C_API_CC__ */
|
||||
|
||||
@@ -30,4 +30,4 @@ bool EIG_invert_m4_m4(float inverse[4][4], const float matrix[4][4]);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __EIGEN3_MATRIX_C_API_H__ */
|
||||
#endif /* __EIGEN3_MATRIX_C_API_H__ */
|
||||
|
||||
@@ -25,7 +25,7 @@
|
||||
# pragma GCC diagnostic ignored "-Wlogical-op"
|
||||
#endif
|
||||
|
||||
#ifdef __EIGEN3_SVD_C_API_CC__ /* quiet warning */
|
||||
#ifdef __EIGEN3_SVD_C_API_CC__ /* quiet warning */
|
||||
#endif
|
||||
|
||||
#include <Eigen/Core>
|
||||
@@ -41,31 +41,31 @@ using Eigen::NoQRPreconditioner;
|
||||
using Eigen::ComputeThinU;
|
||||
using Eigen::ComputeThinV;
|
||||
|
||||
using Eigen::Map;
|
||||
using Eigen::MatrixXf;
|
||||
using Eigen::VectorXf;
|
||||
using Eigen::Map;
|
||||
|
||||
using Eigen::Matrix4f;
|
||||
|
||||
void EIG_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V)
|
||||
{
|
||||
/* Since our matrix is squared, we can use thinU/V. */
|
||||
unsigned int flags = (r_U ? ComputeThinU : 0) | (r_V ? ComputeThinV : 0);
|
||||
/* Since our matrix is squared, we can use thinU/V. */
|
||||
unsigned int flags = (r_U ? ComputeThinU : 0) | (r_V ? ComputeThinV : 0);
|
||||
|
||||
/* Blender and Eigen matrices are both column-major. */
|
||||
JacobiSVD<MatrixXf, NoQRPreconditioner> svd(Map<MatrixXf>((float *)matrix, size, size), flags);
|
||||
/* Blender and Eigen matrices are both column-major. */
|
||||
JacobiSVD<MatrixXf, NoQRPreconditioner> svd(Map<MatrixXf>((float *)matrix, size, size), flags);
|
||||
|
||||
if (r_U) {
|
||||
Map<MatrixXf>(r_U, size, size) = svd.matrixU();
|
||||
}
|
||||
if (r_U) {
|
||||
Map<MatrixXf>(r_U, size, size) = svd.matrixU();
|
||||
}
|
||||
|
||||
if (r_S) {
|
||||
Map<VectorXf>(r_S, size) = svd.singularValues();
|
||||
}
|
||||
if (r_S) {
|
||||
Map<VectorXf>(r_S, size) = svd.singularValues();
|
||||
}
|
||||
|
||||
if (r_V) {
|
||||
Map<MatrixXf>(r_V, size, size) = svd.matrixV();
|
||||
}
|
||||
if (r_V) {
|
||||
Map<MatrixXf>(r_V, size, size) = svd.matrixV();
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* __EIGEN3_SVD_C_API_CC__ */
|
||||
#endif /* __EIGEN3_SVD_C_API_CC__ */
|
||||
|
||||
@@ -24,10 +24,11 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void EIG_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V);
|
||||
void EIG_svd_square_matrix(
|
||||
const int size, const float *matrix, float *r_U, float *r_S, float *r_V);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __EIGEN3_SVD_C_API_H__ */
|
||||
#endif /* __EIGEN3_SVD_C_API_H__ */
|
||||
|
||||
Reference in New Issue
Block a user