This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation.
MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness.
The vast majority of deltas in this patch fall into one of two cases:
- Ensuring ccl_private is specified for thread-local pointer types
- Ensuring ccl_global is specified for device-wide pointer types
Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant.
In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture.
The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation.
Ref T92212
Reviewed By: brecht
Maniphest Tasks: T92212
Differential Revision: https://developer.blender.org/D12864
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.
Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.
Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycleshttps://wiki.blender.org/wiki/Source/Render/Cycles
Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)
For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.
Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.
Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.
Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.
This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.
More feature will be enabled once they're ported to the split kernel and
tested.
Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.
Based on the research paper:
https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf
Here's the documentation:
https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit
Design discussion of the patch:
https://developer.blender.org/T44197
Differential Revision: https://developer.blender.org/D1200
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.
Ref T37477.
By default lighting from the world is computed solely with indirect light
sampling. However for more complex environment maps this can be too noisy, as
sampling the BSDF may not easily find the highlights in the environment map
image. By enabling this option, the world background will be sampled as a lamp,
with lighter parts automatically given more samples.
Map Resolution specifies the size of the importance map (res x res). Before
rendering starts, an importance map is generated by "baking" a grayscale image
from the world shader. This will then be used to determine which parts of the
background are light and so should receive more samples than darker parts.
Higher resolutions will result in more accurate sampling but take more setup
time and memory.
Patch by Mike Farnsworth, thanks!