This adds support for running a set of nodes repeatedly. The number
of iterations can be controlled dynamically as an input of the repeat
zone. The repeat zone can be added in via the search or from the
Add > Utilities menu.
The main use case is to replace long repetitive node chains with a more
flexible alternative. Technically, repeat zones can also be used for
many other use cases. However, due to their serial nature, performance
is very sub-optimal when they are used to solve problems that could
be processed in parallel. Better solutions for such use cases will
be worked on separately.
Repeat zones are similar to simulation zones. The major difference is
that they have no concept of time and are always evaluated entirely in
the current frame, while in simulations only a single iteration is
evaluated per frame.
Stopping the repetition early using a dynamic condition is not yet
supported. "Break" functionality can be implemented manually using
Switch nodes in the loop for now. It's likely that this functionality
will be built into the repeat zone in the future.
For now, things are kept more simple.
Remaining Todos after this first version:
* Improve socket inspection and viewer node support. Currently, only
the first iteration is taken into account for socket inspection
and the viewer.
* Make loop evaluation more lazy. Currently, the evaluation is eager,
meaning that it evaluates some nodes even though their output may not
be required.
Pull Request: https://projects.blender.org/blender/blender/pulls/109164
The simulation state used by simulation nodes is owned by the modifier. Since a
geometry nodes setup can contain an arbitrary number of simulations, the modifier
has a mapping from `SimulationZoneID` to `SimulationZoneState`. This patch changes
what is used as `SimulationZoneID`.
Previously, the `SimulationZoneID` contained a list of `bNode::identifier` that described
the path from the root node tree to the simulation output node. This works ok in many
cases, but also has a significant problem: The `SimulationZoneID` changes when moving
the simulation zone into or out of a node group. This implies that any of these operations
loses the mapping from zone to simulation state, invalidating the cache or even baked data.
The goal of this patch is to introduce a single-integer ID that identifies a (nested) simulation
zone and is stable even when grouping and un-grouping. The ID should be stable even if the
node group containing the (nested) simulation zone is in a separate linked .blend file and
that linked file is changed.
In the future, the same kind of ID can be used to store e.g. checkpoint/baked/frozen data
in the modifier.
To achieve the described goal, node trees can now store an arbitrary number of nested node
references (an array of `bNestedNodeRef`). Each nested node reference has an ID that is
unique within the current node tree. The node tree does not store the entire path to the
nested node. Instead it only know which group node the nested node is in, and what the
nested node ID of the node is within that group. Grouping and un-grouping operations
have to update the nested node references to keep the IDs stable. Importantly though,
these operations only have to care about the two node groups that are affected. IDs in
higher level node groups remain unchanged by design.
A consequence of this design is that every `bNodeTree` now has a `bNestedNodeRef`
for every (nested) simulation zone. Two instances of the same simulation zone (because
a node group is reused) are referenced by two separate `bNestedNodeRef`. This is
important to keep in mind, because it also means that this solution doesn't scale well if
we wanted to use it to keep stable references to *all* nested nodes. I can't think of a
solution that fulfills the described requirements but scales better with more nodes. For
that reason, this solution should only be used when we want to store data for each
referenced nested node at the top level (like we do for simulations).
This is not a replacement for `ViewerPath` which can store a path to data in a node tree
without changing the node tree. Also `ViewerPath` can contain information like the loop
iteration that should be viewed (#109164). `bNestedNodeRef` can't differentiate between
different iterations of a loop. This also means that simulations can't be used inside of a
loop (loops inside of a simulation work fine though).
When baking, the new stable ID is now written to disk, which means that baked data is
not invalidated by grouping/un-grouping operations. Backward compatibility for baked
data is provided, but only works as long as the simulation zone has not been moved to
a different node group yet. Forward compatibility for the baked data is not provided
(so older versions can't load the data baked with a newer version of Blender).
Pull Request: https://projects.blender.org/blender/blender/pulls/109444
Just avoid creating links to outside the group. The original
version worked a little more accurately. But still she was just
making up links (because the inline version of the graph wasn't the same anyway).
For now, this is just a workaround to work around the
problem in the new behavior caused by fa3ca9afdb .
Pull Request: https://projects.blender.org/blender/blender/pulls/108332
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
See: https://projects.blender.org/blender/blender/issues/103343
Changes:
1. Added `BKE_node.hh` file. New file includes old one.
2. Functions moved to new file. Redundant `(void)`, `struct` are removed.
3. All cpp includes replaced from `.h` on `.hh`.
4. Everything in `BKE_node.hh` is on `blender::bke` namespace.
5. All implementation functions moved in namespace.
6. Function names (`BKE_node_*`) changed to `blender::bke::node_*`.
7. `eNodeSizePreset` now is a class, with renamed items.
Pull Request: https://projects.blender.org/blender/blender/pulls/107790
Adds a `remap_pairing` function for node group operators that ensures
the simulation input nodes' `output_node_id` matches the new node are
creating a group, ungrouping a node group, or separating from a group.
Also fixes a crash in the "Group Separate" operator when group
input/output nodes are included in the selection.
Pull Request: https://projects.blender.org/blender/blender/pulls/107807
This adds support for building simulations with geometry nodes. A new
`Simulation Input` and `Simulation Output` node allow maintaining a
simulation state across multiple frames. Together these two nodes form
a `simulation zone` which contains all the nodes that update the simulation
state from one frame to the next.
A new simulation zone can be added via the menu
(`Simulation > Simulation Zone`) or with the node add search.
The simulation state contains a geometry by default. However, it is possible
to add multiple geometry sockets as well as other socket types. Currently,
field inputs are evaluated and stored for the preceding geometry socket in
the order that the sockets are shown. Simulation state items can be added
by linking one of the empty sockets to something else. In the sidebar, there
is a new panel that allows adding, removing and reordering these sockets.
The simulation nodes behave as follows:
* On the first frame, the inputs of the `Simulation Input` node are evaluated
to initialize the simulation state. In later frames these sockets are not
evaluated anymore. The `Delta Time` at the first frame is zero, but the
simulation zone is still evaluated.
* On every next frame, the `Simulation Input` node outputs the simulation
state of the previous frame. Nodes in the simulation zone can edit that
data in arbitrary ways, also taking into account the `Delta Time`. The new
simulation state has to be passed to the `Simulation Output` node where it
is cached and forwarded.
* On a frame that is already cached or baked, the nodes in the simulation
zone are not evaluated, because the `Simulation Output` node can return
the previously cached data directly.
It is not allowed to connect sockets from inside the simulation zone to the
outside without going through the `Simulation Output` node. This is a necessary
restriction to make caching and sub-frame interpolation work. Links can go into
the simulation zone without problems though.
Anonymous attributes are not propagated by the simulation nodes unless they
are explicitly stored in the simulation state. This is unfortunate, but
currently there is no practical and reliable alternative. The core problem
is detecting which anonymous attributes will be required for the simulation
and afterwards. While we can detect this for the current evaluation, we can't
look into the future in time to see what data will be necessary. We intend to
make it easier to explicitly pass data through a simulation in the future,
even if the simulation is in a nested node group.
There is a new `Simulation Nodes` panel in the physics tab in the properties
editor. It allows baking all simulation zones on the selected objects. The
baking options are intentially kept at a minimum for this MVP. More features
for simulation baking as well as baking in general can be expected to be added
separately.
All baked data is stored on disk in a folder next to the .blend file. #106937
describes how baking is implemented in more detail. Volumes can not be baked
yet and materials are lost during baking for now. Packing the baked data into
the .blend file is not yet supported.
The timeline indicates which frames are currently cached, baked or cached but
invalidated by user-changes.
Simulation input and output nodes are internally linked together by their
`bNode.identifier` which stays the same even if the node name changes. They
are generally added and removed together. However, there are still cases where
"dangling" simulation nodes can be created currently. Those generally don't
cause harm, but would be nice to avoid this in more cases in the future.
Co-authored-by: Hans Goudey <h.goudey@me.com>
Co-authored-by: Lukas Tönne <lukas@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/104924
The goal is to solve confusion of the "All rights reserved" for licensing
code under an open-source license.
The phrase "All rights reserved" comes from a historical convention that
required this phrase for the copyright protection to apply. This convention
is no longer relevant.
However, even though the phrase has no meaning in establishing the copyright
it has not lost meaning in terms of licensing.
This change makes it so code under the Blender Foundation copyright does
not use "all rights reserved". This is also how the GPL license itself
states how to apply it to the source code:
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software ...
This change does not change copyright notice in cases when the copyright
is dual (BF and an author), or just an author of the code. It also does
mot change copyright which is inherited from NaN Holding BV as it needs
some further investigation about what is the proper way to handle it.
Add `contains_group` method in python api for `NodeTree` type, cleanup
`ntreeHasTree` function, reuse `ntreeHasTree` in more place in code.
The algorithm has been changed to not recheck trees by using set.
Performance gains from avoiding already checked node trees:
Based on tests, can say that for large files with a huge number
of trees, the response speed of opening the search menu in the
node editor increased by ~200 times (for really large projects
with 16 individual groups in 6 levels of nesting). Group insert
operations are also accelerated, but this is different in some cases.
Pull Request #104465
Since a year and a half ago we've been switching to a new way to
represent what sockets a node should have called "declarations"
that's easier to use, clearer, and more flexible for upcoming
features like dynamic socket counts or generic type sockets.
All builtin nodes with a static set of sockets have switched, but one
missing area has been group nodes and group input/output nodes. These
nodes have **dynamic** declarations which change based on their
properties or the group they're inside of. This patch addresses that,
in preparation for using the same dynamic declaration feature for
simulation nodes.
Generally there shouldn't be user-visible differences, but one benefit
is that user-created socket descriptions are now visible directly in
the node editor for group nodes and group input/output nodes.
The commit contains a few changes:
- Add a node type callback for building dynamic declarations with
different arguments
- Add an `Extend` socket declaration for the "virtual" sockets used
for connecting new links
- A similar `Custom` socket declaration is used for addon-defined socket
- Simplify the node update loop to use the declaration to build update
sockets
- Replace the "group update" functions with the declaration building
- Move the node group input/output link creation to link drag operator
- Make the field status part of group node declarations
(not for group input/output nodes though)
- Some fixes for declarations to make them update and build properly
Differential Revision: https://developer.blender.org/D16850
Separate the "insert nodes into group" operation into more distinct
phases. This helps to clarify what is actually happening, to avoid
redundant updates to group nodes every time a new socket is discovered,
and to make use of the topology cache to avoid the "accidentally
quadratic" alrogithms that we have slowly been removing from node
editing.
The change is motivated by the desire to use dynamic node declarations
for group nodes and group input/output nodes, where it is helpful to
avoid updating the declaration and sockets multiple times.
In a few places, nodes were added without updating the Identifiers and
vector. In other places nodes we removed without removing from and
rebuilding the vector. This is solved in a few ways. First I exposed
a function to rebuild the vector from scratch, and added unique ID
finding to a few places.
The changes to node group building and separating are more involved,
mostly because it was hard to see the correct behavior without some
refactoring. Now `VectorSet` is used to store nodes involved in the
operation. Some things are handled more simply with the topology
cache and by passing a span of nodes.
This patch adds an integer identifier to nodes that doesn't change when
the node name changes. This identifier can be used by different systems
to reference a node. This may be important to store caches and simulation
states per node, because otherwise those would always be invalidated
when a node name changes.
Additionally, this kind of identifier could make some things more efficient,
because with it an integer is enough to identify a node and one does not
have to store the node name.
I observed a 10% improvement in evaluation time in a file with an extreme
number of simple math nodes, due to reduced logging overhead-- from
0.226s to 0.205s.
Differential Revision: https://developer.blender.org/D15775
This cache was never written to, only "copied" between sockets in one
case, it dates back at least a decade. It doesn't make sense to store
caches on node trees directly anyway, since they can be used in
multiple places.
* This patch just moves runtime data to the runtime struct to cleanup
the dna struct. Arguably, some of this data should not even be there
because it's very use case specific. This can be cleaned up separately.
* `miniwidth` was removed completely, because it was not used anywhere.
The corresponding rna property `width_hidden` is kept to avoid
script breakage, but does not do anything (e.g. node wrangler sets it).
* Since rna is in C, some helper functions where added to access the
C++ runtime data from rna.
* This size of `bNode` decreases from 432 to 368 bytes.
This allows for optimizations because one does not have to iterate
over all nodes anymore to find all nodes within a frame.
Differential Revision: https://developer.blender.org/D16106
**Problem**
Currently multiple input sockets are created when a new node group is
made from selected nodes. Some of these are linked from the same source.
It is not convenient to sort out and remove multiple input sockets that
represent the same input. These inputs usually have meaningless names
like 'value', 'x', etc.
**Solution**
Create common input sockets for each link starting from the same input.
Move links inside the new group's node tree and reroute it to connect
the common input socket to the original nodes. This is done by building
up a mapping between the incoming link sources to the input interfaces
created for them. The input interfaces are reused by the rest of the
links having the same source.
This patch also changes the way the input sockets get their names.
Output socket names of the group nodes usually are specific and are
given consciously. Use the output socket names from group nodes instead
of the inputs where the links point to.
Differential Revision: https://developer.blender.org/D15802
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
When e.g. grouping nodes into nodegroups, these would not show up
immediately in the Outliner (Blender File / Data API view).
Now send (unique combination, not used elsewhere) notifiers (and listen
for these in the Outliner).
Differential Revision: https://developer.blender.org/D16093
The multi-socket input sorting was used for two purposes: moving links
to the proper positions when dragging a new link, and resetting the
multi-input indices on the links when removing a link. They are now
separated into two functions, and the sorting when making a group
node that didn't accomplish anything is removed (in that case a
proper implementation would copy the indices from the original
exterior sockets).
Use C++ Map that supports the duplication natively. Use vectors instead
of linked lists, and adjust naming. Also remove combination of reroutes
for input sockets, which doesn't make sense since a reroute isn't
allowed to combine multiple input links into one output.
Adds `rna_path.cc` and `RNA_path.h`.
`rna_access.c` is a quite big file, which makes it rather hard and
inconvenient to navigate. RNA path functions form a nicely coherent unit
that can stand well on it's own, so it makes sense to split them off to
mitigate the problem. Moreover, I was looking into refactoring the quite
convoluted/overloaded `rna_path_parse()`, and found that some C++
features may help greatly with that. So having that code compile in C++
would be helpful to attempt that.
Differential Revision: https://developer.blender.org/D15540
Reviewed by: Brecht Van Lommel, Campbell Barton, Bastien Montagne
There was already a utility to retrieve the correct node group idname
from the context, `node_group_idname`, but often it's clearer to
use lower-level arguments, or the context isn't accessible.
Storing the group idname in the tree type makes it accessible
without rewriting it elsewhere.
Add a check to the creation of node groups to remove hidden links
that are connected to the outside of the node group. This avoids
creating sockets in the group's interface that aren't (visibly)
connected to anything within the node group.
Reviewed By: Jacques Lucke, Hans Goudey
Differential Revision: https://developer.blender.org/D14249
So far it was needed to declare a new RNA struct to `RNA_access.h` manually.
Since 9b298cf3db we generate a `RNA_prototypes.h` for RNA property
declarations. Now this also includes the RNA struct declarations, so they don't
have to be added manually anymore.
Differential Revision: https://developer.blender.org/D13862
Reviewed by: brecht, campbellbarton
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
This commit moves code in all node editor files to the
`blender::ed::space_node` namespace, except for C API
functions defined in `ED_node.h`, which can only be moved
once all areas calling them are moved to C++.
The change is fairly straightforward, I just moved a couple
of "ED_" code blocks around to make the namespace more
contiguous, and there's the method for adding a pointer to
a struct in a C++ namespace in DNA.
Differential Revision: https://developer.blender.org/D13871
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791