* Use .empty() and .data()
* Use nullptr instead of 0
* No else after return
* Simple class member initialization
* Add override for virtual methods
* Include C++ instead of C headers
* Remove some unused includes
* Use default constructors
* Always use braces
* Consistent names in definition and declaration
* Change typedef to using
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
Previously, Cycles only supported the Henyey-Greenstein phase function for volume scattering.
While HG is flexible and works for a wide range of effects, sometimes a more physically accurate
phase function may be needed for realism.
Therefore, this adds three new phase functions to the code:
Rayleigh: For particles with a size below the wavelength of light, mostly athmospheric scattering.
Fournier-Forand: For realistic underwater scattering.
Draine: Fairly specific on its own (mostly for interstellar dust), but useful for the next entry.
Mie: Approximates Mie scattering in water droplets using a mix of Draine and HG phase functions.
These phase functions can be combined using Mix nodes as usual.
Co-authored-by: Lukas Stockner <lukas@lukasstockner.de>
Pull Request: https://projects.blender.org/blender/blender/pulls/123532
Since their introduction, generated UDIM images/tiles would not be
loaded in Cycles. In relative recent history 72ab6faf5d added the
ability to track which tiles were still marked as being "generated" and
unsaved. However, that check was never implemented into the Cycles code.
With this PR, these two additional scenarios should now work:
- Properly load pixels if all tiles are generated
- Properly load pixels if a UDIM image has been loaded from a file and
new generated tiles have been added but not saved yet etc.
Pull Request: https://projects.blender.org/blender/blender/pulls/127673
Add Metallic BSDF Node to the shader editor.
This node can primarily be used to create more realistic looking
metallic materials than the existing Glossy BSDF node.
This commit does not add any new closures to Cycles, it simply exposes
existing closures that were previous hard to access on their own.
- Exposes the F82 fresnel type that is currently used by the
metallic component of the Principled BSDF. Results should match
between the Metallic BSDF and Principled BSDF when using the same
settings.
- Exposes the Physical Conductor fresnel type that was previously
limited to custom OSL scripts. The Conductor fresnel type accepts
IOR and Extinction coefficients to define the appearance of the
material based off real life measurements.
EEVEE only supports the F82 fresnel type with internal code to convert
the the physical conductor inputs in to a colour format for F82,
which can lead to noticeable rendering differences with
some configurations.
Pull Request: https://projects.blender.org/blender/blender/pulls/114958
This patch implements a new Gabor noise node based on [1] but with the
improvements from [2] and the phasor formulation from [3].
We compare with the most popular existing implementation, that of OSL,
from the user's point of view:
- This implementation produces C1 continuous noise as opposed to the
non continuous OSL implementation, so it can be used for bump
mapping and is generally smother. This is achieved by windowing the
Gabor kernel using a Hann window.
- The Bandwidth input of OSL was hard-coded to 1 and was replaced with
a frequency input, which OSL hard codes to 2, since frequency is
more natural to control. This is even more true now that that Gabor
kernel is windowed as opposed to truncated, which means increasing
the bandwidth will just turn the Gaussian component of the Gabor
into a Hann window. While decreasing the bandwidth will eliminate
the harmonic from the Gabor kernel, which is the point of Gabor
noise.
- OSL had three discrete modes of operation for orienting the kernel.
Anisotropic, Isotropic, and a hybrid mode. While this implementation
provides a continuous Anisotropy parameter which users are already
familiar with from the Glossy BSDF node.
- This implementation provides not just the Gabor noise value, but
also its phase and intensity components. The Gabor noise value is
basically sin(phase) * intensity, but the phase is arguably more
useful since it does not suffer from the low contrast issues that
Gabor suffers from. While the intensity is useful to hide the
singularities in the phase.
- This implementation converges faster that OSL's relative to the
impulse count, so we fix the impulses count to 8 for simplicitly.
- This implementation does not implement anisotropic filtering.
Future improvements to the node includes implementing surface noise and
filtering. As well as extending the spectral control of the noise,
either by providing specialized kernels as was done in #110802, or by
providing some more procedural control over the frequencies of the
Gabor.
References:
[1]: Lagae, Ares, et al. "Procedural noise using sparse Gabor
convolution." ACM Transactions on Graphics (TOG) 28.3 (2009): 1-10.
[2]: Tavernier, Vincent, et al. "Making gabor noise fast and
normalized." Eurographics 2019-40th Annual Conference of the European
Association for Computer Graphics. 2019.
[3]: Tricard, Thibault, et al. "Procedural phasor noise." ACM
Transactions on Graphics (TOG) 38.4 (2019): 1-13.
Pull Request: https://projects.blender.org/blender/blender/pulls/121820
Transport rays that enter to another location in the scene, with
specified ray position and normal. This may be used to render portals
for visual effects, and other production rendering tricks.
This acts much like a Transparent BSDF. Render passes are passed
through, and this is affected by light path max transparent bounces.
Pull Request: https://projects.blender.org/blender/blender/pulls/114386
This fixes the following name collisions:
* Compositor Box/Ellipse Mask node: `width` -> `mask_width`
(also renamed the `height` property accordingly)
* Shader AOV Output node: `name` -> `aov_name`
* Geometry Color node: `color` -> `value`.
Those are breaking changes unfortunately, because looking up those property
names yielded the node-specific and not the common property. Therefore, this is
targeted at `main` instead of `4.1`.
Pull Request: https://projects.blender.org/blender/blender/pulls/119284
This feature is useful for many production scenarios as it allows for the
creation of separate render passes with specific worlds. This would help
workflows that require different skies or other backgrounds for compositing.
Ref #117919
Pull Request: https://projects.blender.org/blender/blender/pulls/117920
This add the displacement option to EEVEE materials.
This unifies the option for Cycles and EEVEE.
The displacement only option is not matching cycles
and not particularly useful. So we decided to not
support it and revert to displacement + bump.
Pull Request: https://projects.blender.org/blender/blender/pulls/113979
This path merges the Musgrave and Noise Texture nodes into a single
combined Noise Texture node. The reasoning is that both nodes
intrinsically do the same thing, which is the layering of Perlin noise
derivatives to produce fractal noise. So the patch de-duplicates code
and unifies the use of fractal noise for the end use.
Since the Noise node had a Distortion input and a Color output, while
the Musgrave node did not, those are now available to the Musgrave types
as new functionalities.
The Dimension input of the Musgrave node is analogous to the Roughness
input of the Noise node, so both inputs were unified to follow the same
behavior of the Roughness input, which is arguable more intuitive to
control. Similarly, the Detail input was slightly different across both
nodes, since the Noise node evaluated one extra layer of noise. This was
also unified to follow the behavior of the Noise node.
The patch, coincidentally fixes an unreported bug causing repeated
output for certain noise types and another floating precision bug
#112180.
The versioning code implemented with this patch ensures backward
compatibility for both the Musgrave and Noise Texture nodes. When
opening older Blender files in Blender 4.1 the output of both nodes are
guaranteed to always be exactly identical to that of Blender files
created before the nodes were merged in all cases.
Forward compatibility with Blender 4.0 is implemented by #114236.
Forward compatibility with Blender 3.6 LTS is implemented by #115015.
Pull Request: #111187
Remove `Material > Shadow Mode` and use `Object > Shadow Ray Visibility`
and `Material > Transparent Shadows` instead.
The versioning system auto-updates objects/materials in EEVEE
scenes so their behavior is as close as possible to the previous one.
Update Cycles to use the native `use_transparent_shadow` property.
Note:
Material changes don't set any `recalc` flag on the objects that use
them, so the EEVEE Next shadow maps don't update when changing
settings/nodes.
Fixing this issue is required for 4.1, but it's out of the scope of this PR.
Pull Request: https://projects.blender.org/blender/blender/pulls/113980
Cycles implements the "Taming the Shadow Terminator" paper by Matt Jen-Yuan
Chiang to solve shadow terminator issues when a bump map is applied, as well
as similar approach for the glossy reflection to ensure ray does not get
reflected to inside of the object.
This correction term is applied unconditionally, which makes it harder to have
full control over shading via normals for stylistic reasons.
This change exposes this corrective term as an option called "Bump Map
Correction" which is available in the shader settings next to the
"Transparent Shadows".
The reason to make it per-shader rather than per-object is to allow flexibility
of a control: it is possible that an object has multiple shaders attached to it,
and only some of them used for bump mapping. Another, and possibly stronger
reason to have it per-shader is ease of assets control: shader brings settings
which are needed for its proper behavior. So if material at some point
decides to take over normals, artists would not need to update settings on
every asset which uses that material.
The option is enabled by default, so there is no changes for existing setups.
Pull Request: https://projects.blender.org/blender/blender/pulls/113480
Implements the paper [A Microfacet-based Hair Scattering
Model](https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14588) by
Weizhen Huang, Matthias B. Hullin and Johannes Hanika.
### Features:
- This is a far-field model, as opposed to the previous near-field
Principled Hair BSDF model. The hair is expected to be less noisy, but
lower roughness values takes longer to render due to numerical
integration along the hair width. The hair also appears to be flat when
viewed up-close.
- The longitudinal width of the scattering lobe differs along the
azimuth, providing a higher contrast compared to the evenly spread
scattering in the near-field Principled Hair BSDF model. For a more
detailed comparison, please refer to the original paper.
- Supports elliptical cross-sections, adding more realism as human hairs
are usually elliptical. The orientation of the cross-section is aligned
with the curve normal, which can be adjusted using geometry nodes.
Default is minimal twist. During sampling, light rays that hit outside
the hair width will continue propogating as if the material is
transparent.
- There is non-physical modulation factors for the first three
lobes (Reflection, Transmission, Secondary Reflection).
### Missing:
- A good default for cross-section orientation. There was an
attempt (9039f76928) to default the orientation to align with the curve
normal in the mathematical sense, but the stability (when animated) is
unclear and it would be a hassle to generalise to all curve types. After
the model is in main, we could experiment with the geometry nodes team
to see what works the best as a default.
Co-authored-by: Lukas Stockner <lukas.stockner@freenet.de>
Pull Request: https://projects.blender.org/blender/blender/pulls/105600
This PR adds the Lacunarity and Normalize inputs to the Noise node
similar to the Voronoi node.
The Lacunarity input controls the scale factor by which each
successive Perlin noise octave is scaled. Which was previously hard
coded to a factor of 2.
The Noise node normalizes its output to the [0, 1] range by default.
The Normalize option makes it possible for the user to disable that.
To keep the behavior consistent with past versions it is enabled by
default.
To make the aforementioned normalization control easer to implement,
the fractal noise code now accumulates signed noise and remaps the
final sum, as opposed to accumulating positive [0, 1] noise.
Pull Request: https://projects.blender.org/blender/blender/pulls/110839
Fractal noise is the idea of evaluating the same noise function multiple times with
different input parameters on each layer and then mixing the results. The individual
layers are usually called octaves.
The number of layers is controlled with a "Detail" slider.
The "Lacunarity" input controls a factor by which each successive layer gets scaled.
The existing Noise node already supports fractal noise. Now the Voronoi Noise node
supports it as well. The node also has a new "Normalize" property that ensures that
the output values stay in a [0.0, 1.0] range. That is except for the F2 feature where
in rare cases the output may be outside that range even with "Normalize" turned on.
How the individual octaves are mixed depends on the feature and output socket:
- F1/Smooth F1/F2:
- Distance/Color output:
The individual Distance/Color octaves are first multiplied by a factor of
`Roughness ^ (#layers - 1.0)` then added together to create the final output.
- Position output:
Each Position octave gets linearly interpolated with the combined output of the
previous octaves. The Roughness input serves as an interpolation factor with
0.0 resutling in only using the combined output of the previous octaves and
1.0 resulting in only using the current highest octave.
- Distance to Edge:
- Distance output:
The Distance octaves are mixed exactly like the Position octaves for F1/Smooth F1/F2.
It should be noted that Voronoi Noise is a relatively slow noise function, especially
at higher dimensions. Increasing the "Detail" makes it even slower. Therefore, when
optimizing a scene one should consider trying to use simpler noise functions instead
of Voronoi if the final result is close enough.
Pull Request: https://projects.blender.org/blender/blender/pulls/106827
Used to be https://archive.blender.org/developer/D17123.
Internally these are already using the same code path anyways, there's no point in maintaining two distinct nodes.
The obvious approach would be to add Anisotropy controls to the Glossy BSDF node and remove the Anisotropic BSDF node. However, that would break forward compability, since older Blender versions don't know how to handle the Anisotropy input on the Glossy BSDF node.
Therefore, this commit technically removes the Glossy BSDF node, uses versioning to replace them with an Anisotropic BSDF node, and renames that node to "Glossy BSDF".
That way, when you open a new file in an older version, all the nodes show up as Anisotropic BSDF nodes and render correctly.
This is a bit ugly internally since we need to preserve the old `idname` which now no longer matches the UI name, but that's not too bad.
Also removes the "Sharp" distribution option and replaces it with GGX, sets Roughness to zero and disconnects any input to the Roughness socket.
Pull Request: https://projects.blender.org/blender/blender/pulls/104445
Due to floating point differences between importance sampling and
texture evaluation, disagreeing on whether or not a ray lies within
the sun disc.
* Use the same input values for geographical_to_direction() in
sky_radiance_nishita() and kernel_data.background.sun.
* The mathematical operations in pdf_uniform_cone() were adjusted to
match sky_radiance_nishita().
Pull Request: https://projects.blender.org/blender/blender/pulls/106764
Cycles converts internal links to converter nodes which don't do anything and
later on get collapsed by the graph optimization. However, the previous code
assumed that one Blender input socket maps to one Cycles input socket.
When a node is muted, there might be internal links from one input to multiple
outputs. In Cycles, this meant that one Blender input socket now mapped to
multiple input sockets on all the converter nodes, so only the last one survived.
THe fix is simple, just make the mapping a MultiMap.
Materials now have an enum to set the emission sampling method, to be
either None, Auto, Front, Back or Front & Back. This replace the
previous "Multiple Importance Sample" option.
Auto is the new default, and uses a heuristic to estimate the emitted
light intensity to determine of the mesh should be considered as a light
for sampling. Shaders sometimes have a bit of emission but treating them
as a light source is not worth the memory/performance overhead.
The Front/Back settings are not important yet, but will help when a
light tree is added. In that case setting emission to Front only on
closed meshes can help ignore emission from inside the mesh interior that
does not contribute anything.
Includes contributions by Brecht Van Lommel and Alaska.
Ref T77889
OSL (like Cycles) has no internal boolean type, instead an integer
input can be flagged to be shown as a boolean in the UI.
Cycles reacts to this by creating a boolean socket on the Blender
side, but as a result incorrectly called the boolean overload of the
set function even though the internal type is an integer.
There's another unrelated crash in the GPU viewport shader code that
appears to apply to every OSL node that outputs a shader, and the file
in T101702 triggers both, so this is only a partial fix for the report.
The attribute node already allows accessing attributes associated
with objects and meshes, which allows changing the behavior of the
same material between different objects or instances. The same idea
can be extended to an even more global level of layers and scenes.
Currently view layers provide an option to replace all materials
with a different one. However, since the same material will be applied
to all objects in the layer, varying the behavior between layers while
preserving distinct materials requires duplicating objects.
Providing access to properties of layers and scenes via the attribute
node enables making materials with built-in switches or settings that
can be controlled globally at the view layer level. This is probably
most useful for complex NPR shading and compositing. Like with objects,
the node can also access built-in scene properties, like render resolution
or FOV of the active camera. Lookup is also attempted in World, similar
to how the Object mode checks the Mesh datablock.
In Cycles this mode is implemented by replacing the attribute node with
the attribute value during sync, allowing constant folding to take the
values into account. This means however that materials that use this
feature have to be re-synced upon any changes to scene, world or camera.
The Eevee version uses a new uniform buffer containing a sorted array
mapping name hashes to values, with binary search lookup. The array
is limited to 512 entries, which is effectively limitless even
considering it is shared by all materials in the scene; it is also
just 16KB of memory so no point trying to optimize further.
The buffer has to be rebuilt when new attributes are detected in a
material, so the draw engine keeps a table of recently seen attribute
names to minimize the chance of extra rebuilds mid-draw.
Differential Revision: https://developer.blender.org/D15941
This patch is a response to T92588 and is implemented
as a Function/Shader node.
This node has support for Float, Vector and Color data types.
For Vector it supports uniform and non-uniform mixing.
For Color it now has the option to remove factor clamping.
It replaces the Mix RGB for Shader and Geometry node trees.
As discussed in T96219, this patch converts existing nodes
in .blend files. The old node is still available in the
Python API but hidden from the menus.
Reviewed By: HooglyBoogly, JacquesLucke, simonthommes, brecht
Maniphest Tasks: T92588
Differential Revision: https://developer.blender.org/D13749
The issue was introduced by rBad5e3d30a2d2 which made possible to use
unbounded elevation angle.
In order to not touch the shading code, we just remap the value to the
expected range the shading code expects. This means that elevation angles
above +/-PI/2 effectively flip the sun rotation angle.
This completes support for tiled texture packing on the Blender / Cycles
side of things.
Most of these changes fall into one of three categories:
- Updating Image handling code to pack/unpack tiled and multi-view images
- Updating Cycles to handle tiled textures through BlenderImageLoader
- Updating OSL to properly handle textures with multiple slots
Differential Revision: https://developer.blender.org/D14395
Inspired by D12936 and D12929, this patch adds general purpose
"Combine Color" and "Separate Color" nodes to Geometry, Compositor,
Shader and Texture nodes.
- Within Geometry Nodes, it replaces the existing "Combine RGB" and
"Separate RGB" nodes.
- Within Compositor Nodes, it replaces the existing
"Combine RGBA/HSVA/YCbCrA/YUVA" and "Separate RGBA/HSVA/YCbCrA/YUVA"
nodes.
- Within Texture Nodes, it replaces the existing "Combine RGBA" and
"Separate RGBA" nodes.
- Within Shader Nodes, it replaces the existing "Combine RGB/HSV" and
"Separate RGB/HSV" nodes.
Python addons have not been updated to the new nodes yet.
**New shader code**
In node_color.h, color.h and gpu_shader_material_color_util.glsl,
missing methods hsl_to_rgb and rgb_to_hsl are added by directly
converting existing C code. They always produce the same result.
**Old code**
As requested by T96219, old nodes still exist but are not displayed in
the add menu. This means Python scripts can still create them as usual.
Otherwise, versioning replaces the old nodes with the new nodes when
opening .blend files.
Differential Revision: https://developer.blender.org/D14034
Light groups are a type of pass that only contains lighting from a subset of light sources.
They are created in the View layer, and light sources (lamps, objects with emissive materials
and/or the environment) can be assigned to a group.
Currently, each light group ends up generating its own version of the Combined pass.
In the future, additional types of passes (e.g. shadowcatcher) might be getting their own
per-lightgroup versions.
The lightgroup creation and assignment is not Cycles-specific, so Eevee or external render
engines could make use of it in the future.
Note that Lightgroups are identified by their name - therefore, the name of the Lightgroup
in the View Layer and the name that's set in an object's settings must match for it to be
included.
Currently, changing a Lightgroup's name does not update objects - this is planned for the
future, along with other features such as denoising for light groups and viewing them in
preview renders.
Original patch by Alex Fuller (@mistaed), with some polishing by Lukas Stockner (@lukasstockner97).
Differential Revision: https://developer.blender.org/D12871
This is a bug on the Blender side, where the depsgraph does not have proper
relations for text object duplis and fails to include the required materials
in the dependency graph. But at least Cycles should not crash.
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.
Ref D14069, T95597
With (center) position, radius and random value outputs.
Eevee does not yet support rendering point clouds, but an untested
implementation of this node was added for when it does.
Ref T92573
This implements the design detailed in T92696 to support virtual
filenames for UDIM textures. Currently, the following 2 substitution
tokens are supported:
| Token | Meaning |
| ----- | ---- |
| <UDIM> | 1001 + u-tile + v-tile * 10 |
| <UVTILE> | Equivalent to u<u-tile + 1>_v<v-tile + 1> |
Example for u-tile of 3 and v-tile of 1:
filename.<UDIM>_ver0023.png --> filename.1014_ver0023.png
filename.<UVTILE>_ver0023.png --> filename.u4_v2_ver0023.png
For image loading, the existing workflow is unchanged. A user can select
one or more image files, belonging to one or more UDIM tile sets, and
have Blender load them all as it does today. Now the <UVTILE> format is
"guessed" just as the <UDIM> format was guessed before.
If guessing fails, the user can simply go into the Image Editor and type
the proper substitution in the filename. Once typing is complete,
Blender will reload the files and correctly fill the tiles. This
workflow is new as attempting to fix the guessing in current versions
did not really work, and the user was often stuck with a confusing
situation.
For image saving, the existing workflow is changed slightly. Currently,
when saving, a user has to be sure to type the filename of the first
tile (e.g. filename.1001.png) to save the entire UDIM set. The number
could differ if they start at a different tile etc. This is confusing.
Now, the user should type a filename containing the appropriate
substitution token. By default Blender will fill in a default name using
the <UDIM> token but the user is free to save out images using <UVTILE>
if they wish.
Differential Revision: https://developer.blender.org/D13057
This replaces lost functionality from the old GN Attribute Map Range node.
This also adds vector support to the shader version of the node.
Notes:
This breaks forward compatibility as this node now uses data storage.
Reviewed By: HooglyBoogly, brecht
Differential Revision: https://developer.blender.org/D12760