* Use .empty() and .data()
* Use nullptr instead of 0
* No else after return
* Simple class member initialization
* Add override for virtual methods
* Include C++ instead of C headers
* Remove some unused includes
* Use default constructors
* Always use braces
* Consistent names in definition and declaration
* Change typedef to using
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
Add Metallic BSDF Node to the shader editor.
This node can primarily be used to create more realistic looking
metallic materials than the existing Glossy BSDF node.
This commit does not add any new closures to Cycles, it simply exposes
existing closures that were previous hard to access on their own.
- Exposes the F82 fresnel type that is currently used by the
metallic component of the Principled BSDF. Results should match
between the Metallic BSDF and Principled BSDF when using the same
settings.
- Exposes the Physical Conductor fresnel type that was previously
limited to custom OSL scripts. The Conductor fresnel type accepts
IOR and Extinction coefficients to define the appearance of the
material based off real life measurements.
EEVEE only supports the F82 fresnel type with internal code to convert
the the physical conductor inputs in to a colour format for F82,
which can lead to noticeable rendering differences with
some configurations.
Pull Request: https://projects.blender.org/blender/blender/pulls/114958
This was a regression after the sphere light changes, where the normal
now is the normal along the geometry of the light and no longer suitable
for the IES texture direction.
This not only fixes point lights with non-zero radius, but makes the IES
texture direction work consistently across light types and meshes,
always rotated by the object transform.
Update the Glass BSDF to internally use Generalized Schlick fresnel.
This allows for easier expansion of certain features in the future.
There should be no functional change from the users perspective.
Pull Request: https://projects.blender.org/blender/blender/pulls/112701
Implements the paper [A Microfacet-based Hair Scattering
Model](https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14588) by
Weizhen Huang, Matthias B. Hullin and Johannes Hanika.
### Features:
- This is a far-field model, as opposed to the previous near-field
Principled Hair BSDF model. The hair is expected to be less noisy, but
lower roughness values takes longer to render due to numerical
integration along the hair width. The hair also appears to be flat when
viewed up-close.
- The longitudinal width of the scattering lobe differs along the
azimuth, providing a higher contrast compared to the evenly spread
scattering in the near-field Principled Hair BSDF model. For a more
detailed comparison, please refer to the original paper.
- Supports elliptical cross-sections, adding more realism as human hairs
are usually elliptical. The orientation of the cross-section is aligned
with the curve normal, which can be adjusted using geometry nodes.
Default is minimal twist. During sampling, light rays that hit outside
the hair width will continue propogating as if the material is
transparent.
- There is non-physical modulation factors for the first three
lobes (Reflection, Transmission, Secondary Reflection).
### Missing:
- A good default for cross-section orientation. There was an
attempt (9039f76928) to default the orientation to align with the curve
normal in the mathematical sense, but the stability (when animated) is
unclear and it would be a hassle to generalise to all curve types. After
the model is in main, we could experiment with the geometry nodes team
to see what works the best as a default.
Co-authored-by: Lukas Stockner <lukas.stockner@freenet.de>
Pull Request: https://projects.blender.org/blender/blender/pulls/105600
this option was already unselectable in the UI, and is treated as GGX
with zero roughness. Upon building the shader graph, we only convert a
closure to `SHARP` when option Filter Glossy is not used and the
roughness is below certain threshold. The benefit is that we can avoid
calling `bsdf_eval()` or return earlier in some cases, but the thresholds
vary across files.
This patch removes `SHARP` closures altogether, and checks if the
roughness value is below a global threshold `BSDF_ROUGHNESS_THRESH`
after blurring, in which case the flag `SD_BSDF_HAS_EVAL` is not set.
The global threshold is set to be `5e-7f` because threshold smaller than
that seems to have caused problem in the past (c6aa0217ac). Also removes
a bunch of functions, variables and arguments that were only there
because we converted closures under certain conditions.
Pull Request: https://projects.blender.org/blender/blender/pulls/109902
When linking a texture directly to the material output, it's likely being
done for the purpose of previewing. In that case, bias the heuristic towards
not building a light tree, as it's likely not needed and slow on dense meshes.
This commit replaces the current Glass approach, where Glass is a virtual closure
that gets replaced with a Glossy and a Refractive closure, with a combined
closure that handles Fresnel after sampling the microfacet. That way, the Fresnel
term is more accurate since it accounts for the microfacet normal, not the
shading normal.
Also updates the BSDF sampling to use a 3D sampler now, since we need two
dimensions to pick the microfacet normal and then a third dimension to pick
reflection/refraction. This can also be used to get rid of the LCG in the
Principled Hair BSDF, which means we can remove it altogether once MultiGGX is
gone.
Also, "sharp" is now supported as a microfacet distribution in OSL, and 2
is supported as the "refract" argument to microfacet() in order to get glass.
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.
Ref D14069, T95597
Remove prefix of filenames that is the same as the folder name. This used
to help when #includes were using individual files, but now they are always
relative to the cycles root directory and so the prefixes are redundant.
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.
* Split render/ into scene/ and session/. The scene/ folder now contains the
scene and its nodes. The session/ folder contains the render session and
associated data structures like drivers and render buffers.
* Move top level kernel headers into new folders kernel/camera/, kernel/film/,
kernel/light/, kernel/sample/, kernel/util/
* Move integrator related kernel headers into kernel/integrator/
* Move OSL shaders from kernel/shaders/ to kernel/osl/shaders/
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.