The goal is to solve confusion of the "All rights reserved" for licensing
code under an open-source license.
The phrase "All rights reserved" comes from a historical convention that
required this phrase for the copyright protection to apply. This convention
is no longer relevant.
However, even though the phrase has no meaning in establishing the copyright
it has not lost meaning in terms of licensing.
This change makes it so code under the Blender Foundation copyright does
not use "all rights reserved". This is also how the GPL license itself
states how to apply it to the source code:
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software ...
This change does not change copyright notice in cases when the copyright
is dual (BF and an author), or just an author of the code. It also does
mot change copyright which is inherited from NaN Holding BV as it needs
some further investigation about what is the proper way to handle it.
For example
```
OIIOOutputDriver::~OIIOOutputDriver()
{
}
```
becomes
```
OIIOOutputDriver::~OIIOOutputDriver() {}
```
Saves quite some vertical space, which is especially handy for
constructors.
Pull Request: https://projects.blender.org/blender/blender/pulls/105594
openSubdiv_init() would detect available evaluators before any OpenGL context
exists, causing a crash with libepoxy. This test however is redundant as we
already check the requirements on the Blender side through the GPU API.
To simplify things, completely remove the device detection in the opensubdiv
module and reduce the evaluators to just CPU and GPU. The plan here is to move
to the GPU module abstraction over OpenGL/Metal/Vulkan and so all these
different backends no longer make sense.
This also removes the user preference for OpenSubdiv compute device, which was
not used for the new GPU subdivision implementation.
Ref D15291
Differential Revision: https://developer.blender.org/D15470
This evaluator is used in order to evaluate subdivision at render time, allowing for
faster renders of meshes with a subdivision surface modifier placed at the last
position in the modifier list.
When evaluating the subsurf modifier, we detect whether we can delegate evaluation
to the draw code. If so, the subdivision is first evaluated on the GPU using our own
custom evaluator (only the coarse data needs to be initially sent to the GPU), then,
buffers for the final `MeshBufferCache` are filled on the GPU using a set of
compute shaders. However, some buffers are still filled on the CPU side, if doing so
on the GPU is impractical (e.g. the line adjacency buffer used for x-ray, whose
logic is hardly GPU compatible).
This is done at the mesh buffer extraction level so that the result can be readily used
in the various OpenGL engines, without having to write custom geometry or tesselation
shaders.
We use our own subdivision evaluation shaders, instead of OpenSubDiv's vanilla one, in
order to control the data layout, and interpolation. For example, we store vertex colors
as compressed 16-bit integers, while OpenSubDiv's default evaluator only work for float
types.
In order to still access the modified geometry on the CPU side, for use in modifiers
or transform operators, a dedicated wrapper type is added `MESH_WRAPPER_TYPE_SUBD`.
Subdivision will be lazily evaluated via `BKE_object_get_evaluated_mesh` which will
create such a wrapper if possible. If the final subdivision surface is not needed on
the CPU side, `BKE_object_get_evaluated_mesh_no_subsurf` should be used.
Enabling or disabling GPU subdivision can be done through the user preferences (under
Viewport -> Subdivision).
See patch description for benchmarks.
Reviewed By: campbellbarton, jbakker, fclem, brecht, #eevee_viewport
Differential Revision: https://developer.blender.org/D12406