There seems to be an integer overflow in OpenVDB code. For now just avoid rendering
the volume when the indices are very large, which is an extreme case anyway.
Pull Request: https://projects.blender.org/blender/blender/pulls/119279
There was one functional issue with the previous API which was its
use in `VolumeGrid<T>::grid_for_write(tree_token)`. The issue was
that the tree token had to be received before the grid is accessed.
However, this `grid_for_write` method might create a copy of the
`VolumeGridData` internally and if it does, the passed in `tree_token`
corresponds to the wrong tree.
The solution is to output the token as part of the method. This has two
additional benefits:
* The API is more safe, because one can't pass an r-value into the methods
anymore. This generally shouldn't be done, because the token should
live at least as long as the OpenVDB tree is used and shouldn't be freed
immediatly.
* The API is a bit simpler, because it's not necessary to call the
`VolumeGrid.tree_access_token()` method anymore.
This refactors how volume grids are stored with the following new goals in mind:
* Get a **stand-alone volume grid** data structure that can be used by geometry nodes.
Previously, the `VolumeGrid` data structure was tightly coupled with the `Volume` data block.
* Support **implicit sharing of grids and trees**. Previously, it was possible to share data
when multiple `Volume` data blocks loaded grids from the same `.vdb` files but this was
not flexible enough.
* Get a safe API for **lazy-loading and unloading** of grids without requiring explicit calls
to some "load" function all the time.
* Get a safe API for **caching grids from files** that is not coupled to the `Volume` data block.
* Get a **tiered API** for different levels of `openvdb` involvement:
* No `OpenVDB`: Since `WITH_OPENVDB` is optional, it's helpful to have parts of the API that
still work in this case. This makes it possible to write high level code for volumes that does
not require `#ifdef WITH_OPENVDB` checks everywhere. This is in `BKE_volume_grid_fwd.hh`.
* Shallow `OpenVDB`: Code using this API requires `WITH_OPENVDB` checks. However, care
is taken to not include the expensive parts of `OpenVDB` and to use forward declarations as
much as possible. This is in `BKE_volume_grid.hh` and uses `openvdb_fwd.hh`.
* "Full" `OpenVDB`: This API requires more heavy `OpenVDB` includes. Fortunately, it turned
out to be not necessary for the common API. So this is only used for task specific APIs.
At the core of the new API is the `VolumeGridData` type. It's a wrapper around an
`openvdb::Grid` and adds some features on top like implicit sharing, lazy-loading and unloading.
Then there are `GVolumeGrid` and `VolumeGrid` which are containers for a volume grid.
Semantically, each `VolumeGrid` has its own independent grid, but this is cheap due to implicit
sharing. At highest level we currently have the `Volume` data-block which contains a list of
`VolumeGrid`.
```mermaid
flowchart LR
Volume --> VolumeGrid --> VolumeGridData --> openvdb::Grid
```
The loading of `.vdb` files is abstracted away behind the volume file cache API. This API makes
it easy to load and reuse entire files and individual grids from disk. It also supports caching
simplify levels for grids on disk.
An important new concept are the "tree access tokens". Whenever some code wants to work
with an openvdb tree, it has to retrieve an access token from the corresponding `VolumeGridData`.
This access token has to be kept alive for as long as the code works with the grid data. The same
token is valid for read and write access. The purpose of these access tokens is to make it possible
to detect when some code is currently working with the openvdb tree. This allows freeing it if it's
possible to reload it later on (e.g. from disk). It's possible to free a tree that is referenced by
multiple owners, but only no one is actively working with. In some sense, this is similar to the
existing `ImageUser` concept.
The most important new files to read are `BKE_volume_grid.hh` and `BKE_volume_grid_file_cache.hh`.
Most other changes are updates to existing code to use the new API.
Pull Request: https://projects.blender.org/blender/blender/pulls/116315
The outlines of volume grids in the viewport are noticeable "wobbly"
when they should simply represent grid boxes. This is especially
noticeable on simple regular grids such as the "Volume Cube" geometry
node output.
The reason is that the outlines generated by taking a triangulated mesh
of the grid boxes and then growing it by successively scaling each
triangle. The offset for each vertex grows proportional to its degree
(number of connected edges). The fix is to divide each vertex's offset
by its degree.
The resulting mesh is much more regular and closer to to 1% desired
growth factor.
Old: 
New: 
Pull Request: https://projects.blender.org/blender/blender/pulls/111657
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.
While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.
Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.
Some directories in `./intern/` have also been excluded:
- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.
An "AUTHORS" file has been added, using the chromium projects authors
file as a template.
Design task: #110784
Ref !110783.
Also see #103343.
There was one unusual complication due to `openvdb` here. The `BKE_volume.h`
header included `openvdb` but that would not link correctly in rna code. I'm not entirely
sure why any of the openvdb code is actually instantiated, may be an issue in the
`openvdb` headers. The solution is to create a new header that gives access to the
underlying `openvdb` data structure for a `Volume` geometry. This header can't be
included in rna for now, until the linking issues are resolved.
Pull Request: https://projects.blender.org/blender/blender/pulls/109508
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
StringGrid has been deprecated in openvdb 9.0.0 and will be removed soon
Reviewed By: Brecht
Differential Revision: http://developer.blender.org/D14133
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:float2) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the blender::math namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others we
currently don't have (uintX, intX). All these variations were asking
for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector functions
should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the BLI_(float|double|mpq)(2|3|4).hh is a bit of a
let down. Most clases are incomplete, out of sync with each others with
different codestyles, and some functions that should be static are not
(i.e: float3::reflect()).
Upsides:
- Still support .x, .y, .z, .w for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types and
can be restricted to certain types. Also template specialization let us
define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance is
the same.
Downsides:
- Might impact debugability. Though I would arge that the bugs are rarelly
caused by the vector class itself (since the operations are quite trivial)
but by the type conversions.
- Might impact compile time. I did not saw a significant impact since the
usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length. For
instance, one can't call len_squared_v3v3 in math::length_squared() and
call it a day.
- Type cast does not work with the template version of the math:: vector
functions. Meaning you need to manually cast float * and (float *)[3] to
float3 for the function calls.
i.e: math::distance_squared(float3(nearest.co), positions[i]);
- Some parts might loose in readability:
float3::dot(v1.normalized(), v2.normalized())
becoming
math::dot(math::normalize(v1), math::normalize(v2))
But I propose, when appropriate, to use
using namespace blender::math; on function local or file scope to
increase readability. dot(normalize(v1), normalize(v2))
Consideration:
- Include back .length() method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement.
It felt like too much for what we need and would be difficult to
extend / modify to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches delaunay_2d.cc and the intersection code. I would like to
know @Howard Trickey (howardt) opinion on the matter.
- The noexcept on the copy constructor of mpq(2|3) is being removed.
But according to @Jacques Lucke (JacquesLucke) it is not a real problem
for now.
I would like to give a huge thanks to @Jacques Lucke (JacquesLucke) who
helped during this and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: http://developer.blender.org/D13791
The problem was that you could getting write access to a grid from a
`const Volume *` without breaking const correctness. I encountered this
when working on support for volumes in the bounding box node. For
geometry nodes there is an important distinction between getting data
"for read" and "for write", with the former returning a `const` version
of the data.
Also, for volumes it was necessary to cast away const, since all of
the relevant functions in `volume.cc` didn't have const versions. This
patch adds `const` in these places, distinguising between "for read"
and "for write" versions of functions where necessary.
The downside is that loading and unloading in the global volume cache
needs const write-access to some member variables. I see that as an
inherent problem that comes up with caching that never has a beautiful
solution anyway.
Some of the const-ness could probably be propogated futher in EEVEE
code, but I'll leave that out, since there is another level of caching.
Differential Revision: https://developer.blender.org/D10916
This changes how the simplify volumes setting works. Before, it only
affeted viewport rendering. This was an issue, because all internal
computations would still have to happen on the high resolution volumes.
With this patch, the simplify setting already affects file loading and
procedural generation of volumes.
Rendering does not have to care about the simplify option anymore,
it just gets the correct simplified version from the depsgraph.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D9176
The adds a new option to simplify volumes in the viewport.
The setting can be found in the Simplify panel in the render properties.
Volume objects use OpenVDB grids, which are sparse. For rendering,
we have to convert sparse grids to dense grids (for now). Those require
significantly more memory. Therefore, it's often a good idea to reduce
the resolution of volumes in the viewport.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D9040
Ref T73201.
Previously, one could only select a volume object in the outliner
or by clicking on the object origin. This patch allows you to click
on the actual volume.
Furthermore, the generated (invisible) mesh that is used for
selection is also used to draw an outline for the volume object now.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D9022
This reverts commit 637a5c964a.
I commited the previous commit because I wasn't building with openvdb.
Compiling with openvdb fix the clang-tidy errror.
* Space: volume density and step size in object or world space
* Step Size: override automatic step size
* Clipping: values below this are ignored for tighter volume bounds
The last two are Cycles only currently.
Ref T73201
Only the volume drawing part is really finished and exposed to the user. Hair
plugs into the existing hair rendering code and is fairly straightforward. The
pointcloud drawing is a hack using overlays rather than Eevee and workbench.
The most tricky part for volume rendering is the case where each volume grid
has a different transform, which requires an additional matrix in the shader
and non-trivial logic in Eevee volume drawing. In the common case were all the
transforms match we don't use the additional per-grid matrix in the shader.
Ref T73201, T68981
Differential Revision: https://developer.blender.org/D6955