/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved. * * SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup bli */ #ifndef __MATH_BASE_INLINE_C__ #define __MATH_BASE_INLINE_C__ #include #include #include #include #include #include "BLI_assert.h" #include "BLI_math_inline.h" #include "BLI_sys_types.h" /* copied from BLI_utildefines.h */ #ifdef __GNUC__ # define UNLIKELY(x) __builtin_expect(!!(x), 0) #else # define UNLIKELY(x) (x) #endif MINLINE float pow2f(float x) { return x * x; } MINLINE float pow3f(float x) { return pow2f(x) * x; } MINLINE float pow4f(float x) { return pow2f(pow2f(x)); } MINLINE float pow5f(float x) { return pow4f(x) * x; } MINLINE float pow7f(float x) { return pow2f(pow3f(x)) * x; } MINLINE float sqrt3f(float f) { if (UNLIKELY(f == 0.0f)) { return 0.0f; } if (UNLIKELY(f < 0.0f)) { return -(float)(exp(log(-f) / 3.0)); } return (float)(exp(log(f) / 3.0)); } MINLINE double sqrt3d(double d) { if (UNLIKELY(d == 0.0)) { return 0.0; } if (UNLIKELY(d < 0.0)) { return -exp(log(-d) / 3.0); } return exp(log(d) / 3.0); } MINLINE float sqrtf_signed(float f) { return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f); } MINLINE float interpf(float target, float origin, float fac) { return (fac * target) + (1.0f - fac) * origin; } MINLINE double interpd(double target, double origin, double fac) { return (fac * target) + (1.0f - fac) * origin; } MINLINE float ratiof(float min, float max, float pos) { float range = max - min; return range == 0 ? 0 : ((pos - min) / range); } MINLINE double ratiod(double min, double max, double pos) { double range = max - min; return range == 0 ? 0 : ((pos - min) / range); } MINLINE float power_of_2(float val) { return (float)pow(2.0, ceil(log((double)val) / M_LN2)); } MINLINE int is_power_of_2_i(int n) { return (n & (n - 1)) == 0; } MINLINE int power_of_2_max_i(int n) { if (is_power_of_2_i(n)) { return n; } do { n = n & (n - 1); } while (!is_power_of_2_i(n)); return n * 2; } MINLINE int power_of_2_min_i(int n) { while (!is_power_of_2_i(n)) { n = n & (n - 1); } return n; } MINLINE unsigned int power_of_2_max_u(unsigned int x) { x -= 1; x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return x + 1; } MINLINE unsigned int log2_floor_u(unsigned int x) { return x <= 1 ? 0 : 1 + log2_floor_u(x >> 1); } MINLINE unsigned int log2_ceil_u(unsigned int x) { if (is_power_of_2_i((int)x)) { return log2_floor_u(x); } return log2_floor_u(x) + 1; } /* rounding and clamping */ #define _round_clamp_fl_impl(arg, ty, min, max) \ { \ float r = floorf(arg + 0.5f); \ if (UNLIKELY(r <= (float)min)) { \ return (ty)min; \ } \ if (UNLIKELY(r >= (float)max)) { \ return (ty)max; \ } \ return (ty)r; \ } #define _round_clamp_db_impl(arg, ty, min, max) \ { \ double r = floor(arg + 0.5); \ if (UNLIKELY(r <= (double)min)) { \ return (ty)min; \ } \ if (UNLIKELY(r >= (double)max)) { \ return (ty)max; \ } \ return (ty)r; \ } #define _round_fl_impl(arg, ty) \ { \ return (ty)floorf(arg + 0.5f); \ } #define _round_db_impl(arg, ty) \ { \ return (ty)floor(arg + 0.5); \ } MINLINE unsigned char round_fl_to_uchar(float a){_round_fl_impl(a, unsigned char)} MINLINE short round_fl_to_short(float a){_round_fl_impl(a, short)} MINLINE int round_fl_to_int(float a){_round_fl_impl(a, int)} MINLINE unsigned int round_fl_to_uint(float a){_round_fl_impl(a, unsigned int)} MINLINE int round_db_to_int(double a){_round_db_impl(a, int)} #undef _round_fl_impl #undef _round_db_impl MINLINE unsigned char round_fl_to_uchar_clamp(float a){ _round_clamp_fl_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE int round_fl_to_int_clamp(float a){_round_clamp_fl_impl(a, int, INT_MIN, INT_MAX)} MINLINE unsigned char round_db_to_uchar_clamp(double a){ _round_clamp_db_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE short round_db_to_short_clamp(double a){ _round_clamp_db_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE int round_db_to_int_clamp(double a){_round_clamp_db_impl(a, int, INT_MIN, INT_MAX)} #undef _round_clamp_fl_impl #undef _round_clamp_db_impl MINLINE float round_to_even(float f) { return roundf(f * 0.5f) * 2.0f; } MINLINE int divide_round_i(int a, int b) { return (2 * a + b) / (2 * b); } /** * Integer division that floors negative result. * \note This works like Python's int division. */ MINLINE int divide_floor_i(int a, int b) { int d = a / b; int r = a % b; /* Optimizes into a single division. */ return r ? d - ((a < 0) ^ (b < 0)) : d; } MINLINE uint divide_ceil_u(uint a, uint b) { return (a + b - 1) / b; } MINLINE uint64_t divide_ceil_ul(uint64_t a, uint64_t b) { return (a + b - 1) / b; } MINLINE uint ceil_to_multiple_u(uint a, uint b) { return divide_ceil_u(a, b) * b; } MINLINE uint64_t ceil_to_multiple_ul(uint64_t a, uint64_t b) { return divide_ceil_ul(a, b) * b; } MINLINE int mod_i(int i, int n) { return (i % n + n) % n; } MINLINE float floored_fmod(const float f, const float n) { return f - n * floorf(f / n); } MINLINE float fractf(float a) { return a - floorf(a); } /* Adapted from `godot-engine` math_funcs.h. */ MINLINE float wrapf(float value, float max, float min) { float range = max - min; return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min; } MINLINE float pingpongf(float value, float scale) { if (scale == 0.0f) { return 0.0f; } return fabsf(fractf((value - scale) / (scale * 2.0f)) * scale * 2.0f - scale); } /* Square. */ MINLINE int square_s(short a) { return a * a; } MINLINE int square_i(int a) { return a * a; } MINLINE unsigned int square_uint(unsigned int a) { return a * a; } MINLINE float square_f(float a) { return a * a; } /* Cube. */ MINLINE int cube_i(int a) { return a * a * a; } MINLINE float cube_f(float a) { return a * a * a; } /* Min/max */ MINLINE float min_ff(float a, float b) { return (a < b) ? a : b; } MINLINE float max_ff(float a, float b) { return (a > b) ? a : b; } /* See: https://www.iquilezles.org/www/articles/smin/smin.htm. */ MINLINE float smoothminf(float a, float b, float c) { if (c != 0.0f) { float h = max_ff(c - fabsf(a - b), 0.0f) / c; return min_ff(a, b) - h * h * h * c * (1.0f / 6.0f); } return min_ff(a, b); } MINLINE float smoothstep(float edge0, float edge1, float x) { float result; if (x < edge0) { result = 0.0f; } else if (x >= edge1) { result = 1.0f; } else { float t = (x - edge0) / (edge1 - edge0); result = (3.0f - 2.0f * t) * (t * t); } return result; } MINLINE double min_dd(double a, double b) { return (a < b) ? a : b; } MINLINE double max_dd(double a, double b) { return (a > b) ? a : b; } MINLINE int min_ii(int a, int b) { return (a < b) ? a : b; } MINLINE int max_ii(int a, int b) { return (b < a) ? a : b; } MINLINE uint min_uu(uint a, uint b) { return (a < b) ? a : b; } MINLINE uint max_uu(uint a, uint b) { return (b < a) ? a : b; } MINLINE unsigned long long min_ulul(unsigned long long a, unsigned long long b) { return (a < b) ? a : b; } MINLINE unsigned long long max_ulul(unsigned long long a, unsigned long long b) { return (b < a) ? a : b; } MINLINE double max_ddd(double a, double b, double c) { return max_dd(max_dd(a, b), c); } MINLINE float min_fff(float a, float b, float c) { return min_ff(min_ff(a, b), c); } MINLINE float max_fff(float a, float b, float c) { return max_ff(max_ff(a, b), c); } MINLINE int min_iii(int a, int b, int c) { return min_ii(min_ii(a, b), c); } MINLINE int max_iii(int a, int b, int c) { return max_ii(max_ii(a, b), c); } MINLINE float min_ffff(float a, float b, float c, float d) { return min_ff(min_fff(a, b, c), d); } MINLINE float max_ffff(float a, float b, float c, float d) { return max_ff(max_fff(a, b, c), d); } MINLINE int min_iiii(int a, int b, int c, int d) { return min_ii(min_iii(a, b, c), d); } MINLINE int max_iiii(int a, int b, int c, int d) { return max_ii(max_iii(a, b, c), d); } MINLINE size_t min_zz(size_t a, size_t b) { return (a < b) ? a : b; } MINLINE size_t max_zz(size_t a, size_t b) { return (b < a) ? a : b; } MINLINE int clamp_i(int value, int min, int max) { return min_ii(max_ii(value, min), max); } MINLINE float clamp_f(float value, float min, float max) { if (value > max) { return max; } if (value < min) { return min; } return value; } MINLINE int compare_ff(float a, float b, const float max_diff) { return fabsf(a - b) <= max_diff; } MINLINE uint ulp_diff_ff(float a, float b) { BLI_assert(sizeof(float) == sizeof(uint)); const uint sign_bit = 0x80000000; const uint infinity = 0x7f800000; union { float f; uint i; } ua, ub; ua.f = a; ub.f = b; const uint a_sign = ua.i & sign_bit; const uint b_sign = ub.i & sign_bit; const uint a_abs = ua.i & ~sign_bit; const uint b_abs = ub.i & ~sign_bit; if (a_abs > infinity || b_abs > infinity) { /* NaNs always return maximum ulps apart. */ return 0xffffffff; } if (a_sign == b_sign) { const uint min_abs = a_abs < b_abs ? a_abs : b_abs; const uint max_abs = a_abs > b_abs ? a_abs : b_abs; return max_abs - min_abs; } return a_abs + b_abs; } MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps) { BLI_assert(max_ulps >= 0 && max_ulps < (1 << 22)); if (fabsf(a - b) <= max_diff) { return 1; } return (ulp_diff_ff(a, b) <= (uint)max_ulps) ? 1 : 0; } MINLINE bool compare_threshold_relative(const float value1, const float value2, const float thresh) { const float abs_diff = fabsf(value1 - value2); /* Avoid letting the threshold get too small just because the values happen to be close to zero. */ if (fabsf(value2) < 1) { return abs_diff > thresh; } /* Using relative threshold in general. */ return abs_diff > thresh * fabsf(value2); } MINLINE float signf(float f) { return (f < 0.0f) ? -1.0f : 1.0f; } MINLINE float compatible_signf(float f) { if (f > 0.0f) { return 1.0f; } if (f < 0.0f) { return -1.0f; } return 0.0f; } MINLINE int signum_i_ex(float a, float eps) { if (a > eps) { return 1; } if (a < -eps) { return -1; } return 0; } MINLINE int signum_i(float a) { if (a > 0.0f) { return 1; } if (a < 0.0f) { return -1; } return 0; } MINLINE int integer_digits_f(const float f) { return (f == 0.0f) ? 0 : (int)floor(log10(fabs(f))) + 1; } MINLINE int integer_digits_d(const double d) { return (d == 0.0) ? 0 : (int)floor(log10(fabs(d))) + 1; } MINLINE int integer_digits_i(const int i) { return (int)log10((double)i) + 1; } /* Low level conversion functions */ MINLINE unsigned char unit_float_to_uchar_clamp(float val) { return (unsigned char)(( (val <= 0.0f) ? 0 : ((val > (1.0f - 0.5f / 255.0f)) ? 255 : ((255.0f * val) + 0.5f)))); } MINLINE unsigned short unit_float_to_ushort_clamp(float val) { return (unsigned short)((val >= 1.0f - 0.5f / 65535) ? 65535 : (val <= 0.0f) ? 0 : (val * 65535.0f + 0.5f)); } MINLINE unsigned char unit_ushort_to_uchar(unsigned short val) { return (unsigned char)(((val) >= 65535 - 128) ? 255 : ((val) + 128) >> 8); } #define unit_float_to_uchar_clamp_v3(v1, v2) \ { \ (v1)[0] = unit_float_to_uchar_clamp((v2[0])); \ (v1)[1] = unit_float_to_uchar_clamp((v2[1])); \ (v1)[2] = unit_float_to_uchar_clamp((v2[2])); \ } \ ((void)0) #define unit_float_to_uchar_clamp_v4(v1, v2) \ { \ (v1)[0] = unit_float_to_uchar_clamp((v2[0])); \ (v1)[1] = unit_float_to_uchar_clamp((v2[1])); \ (v1)[2] = unit_float_to_uchar_clamp((v2[2])); \ (v1)[3] = unit_float_to_uchar_clamp((v2[3])); \ } \ ((void)0) #endif /* __MATH_BASE_INLINE_C__ */