/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include "kernel/geom/geom.h" CCL_NAMESPACE_BEGIN /* returns true if the triangle is has motion blur or an instancing transform applied */ ccl_device_inline bool triangle_world_space_vertices( KernelGlobals kg, int object, int prim, float time, float3 V[3]) { bool has_motion = false; const int object_flag = kernel_data_fetch(object_flag, object); if (object_flag & SD_OBJECT_HAS_VERTEX_MOTION && time >= 0.0f) { motion_triangle_vertices(kg, object, prim, time, V); has_motion = true; } else { triangle_vertices(kg, prim, V); } if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) { #ifdef __OBJECT_MOTION__ float object_time = (time >= 0.0f) ? time : 0.5f; Transform tfm = object_fetch_transform_motion_test(kg, object, object_time, NULL); #else Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); #endif V[0] = transform_point(&tfm, V[0]); V[1] = transform_point(&tfm, V[1]); V[2] = transform_point(&tfm, V[2]); has_motion = true; } return has_motion; } ccl_device_inline float triangle_light_pdf_area_sampling(const float3 Ng, const float3 I, float t) { float cos_pi = fabsf(dot(Ng, I)); if (cos_pi == 0.0f) { return 0.0f; } return t * t / cos_pi; } ccl_device_forceinline float triangle_light_pdf(KernelGlobals kg, ccl_private const ShaderData *sd, float t) { /* A naive heuristic to decide between costly solid angle sampling * and simple area sampling, comparing the distance to the triangle plane * to the length of the edges of the triangle. */ float3 V[3]; bool has_motion = triangle_world_space_vertices(kg, sd->object, sd->prim, sd->time, V); const float3 e0 = V[1] - V[0]; const float3 e1 = V[2] - V[0]; const float3 e2 = V[2] - V[1]; const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2))); const float3 N = cross(e0, e1); const float distance_to_plane = fabsf(dot(N, sd->wi * t)) / dot(N, N); const float area = 0.5f * len(N); float pdf; if (longest_edge_squared > distance_to_plane * distance_to_plane) { /* sd contains the point on the light source * calculate Px, the point that we're shading */ const float3 Px = sd->P + sd->wi * t; const float3 A = safe_normalize(V[0] - Px); const float3 B = safe_normalize(V[1] - Px); const float3 C = safe_normalize(V[2] - Px); const float solid_angle = 2.0f * fast_atan2f(fabsf(dot(A, cross(B, C))), (1.0f + dot(B, C) + dot(A, C) + dot(A, B))); /* distribution_pdf_triangles is calculated over triangle area, but we're not sampling over * its area */ if (UNLIKELY(solid_angle == 0.0f)) { return 0.0f; } else { pdf = 1.0f / solid_angle; } } else { if (UNLIKELY(area == 0.0f)) { return 0.0f; } pdf = triangle_light_pdf_area_sampling(sd->Ng, sd->wi, t) / area; } /* Belongs in distribution.h but can reuse computations here. */ if (!kernel_data.integrator.use_light_tree) { float distribution_area = area; if (has_motion && area != 0.0f) { /* For motion blur need area of triangle at fixed time as used in the CDF. */ triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V); distribution_area = triangle_area(V[0], V[1], V[2]); } pdf *= distribution_area * kernel_data.integrator.distribution_pdf_triangles; } return pdf; } template ccl_device_forceinline bool triangle_light_sample(KernelGlobals kg, int prim, int object, const float2 rand, float time, ccl_private LightSample *ls, const float3 P) { /* A naive heuristic to decide between costly solid angle sampling * and simple area sampling, comparing the distance to the triangle plane * to the length of the edges of the triangle. */ float3 V[3]; bool has_motion = triangle_world_space_vertices(kg, object, prim, time, V); const float3 e0 = V[1] - V[0]; const float3 e1 = V[2] - V[0]; const float3 e2 = V[2] - V[1]; const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2))); const float3 N0 = cross(e0, e1); float Nl = 0.0f; ls->Ng = safe_normalize_len(N0, &Nl); const float area = 0.5f * Nl; /* flip normal if necessary */ const int object_flag = kernel_data_fetch(object_flag, object); if (object_flag & SD_OBJECT_NEGATIVE_SCALE) { ls->Ng = -ls->Ng; } ls->eval_fac = 1.0f; ls->shader = kernel_data_fetch(tri_shader, prim); ls->object = object; ls->prim = prim; ls->lamp = LAMP_NONE; ls->shader |= SHADER_USE_MIS; ls->type = LIGHT_TRIANGLE; ls->group = object_lightgroup(kg, object); float distance_to_plane = fabsf(dot(N0, V[0] - P) / dot(N0, N0)); if (!in_volume_segment && (longest_edge_squared > distance_to_plane * distance_to_plane)) { /* A modified version of James Arvo, "Stratified Sampling of Spherical Triangles" * http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */ /* Project the triangle to the unit sphere and calculate the three unit vector that spans the * spherical triangle. */ const float3 A = safe_normalize(V[0] - P); const float3 B = safe_normalize(V[1] - P); const float3 C = safe_normalize(V[2] - P); const float cos_a = dot(B, C); const float cos_b = dot(A, C); const float cos_c = dot(A, B); const float sin_b_sin_c_2 = (1.0f - sqr(cos_b)) * (1.0f - sqr(cos_c)); const float mixed_product = fabsf(dot(A, cross(B, C))); /* The area of the spherical triangle is equal to the subtended solid angle. */ const float solid_angle = 2.0f * fast_atan2f(mixed_product, (1.0f + cos_a + cos_b + cos_c)); /* Select a random sub-area of the spherical triangle and calculate the third vertex C_ of that * new triangle. */ const float A_hat = rand.x * solid_angle; float sin_A_hat, cos_A_hat; fast_sincosf(A_hat, &sin_A_hat, &cos_A_hat); /* These values lack a `sin_b * sin_c` factor, will divide when computing `temp`. */ const float cos_alpha = cos_a - cos_b * cos_c; const float sin_alpha = mixed_product; const float t = cos_A_hat * cos_alpha + sin_A_hat * sin_alpha; const float temp = (cos_c - 1.0f) * t * cos_alpha / sin_b_sin_c_2; const float q = (cos_A_hat - cos_c + temp) / (1.0f - cos_A_hat * cos_c + temp); const float3 U = safe_normalize(C - cos_b * A); const float3 C_ = safe_normalize(q * A + sin_from_cos(q) * U); /* Finally, select a random point along the edge of the new triangle * That point on the spherical triangle is the sampled ray direction */ const float z = 1.0f - rand.y * (1.0f - dot(C_, B)); ls->D = z * B + sin_from_cos(z) * safe_normalize(C_ - dot(C_, B) * B); /* calculate intersection with the planar triangle */ if (!ray_triangle_intersect(P, ls->D, 0.0f, FLT_MAX, V[0], V[1], V[2], &ls->u, &ls->v, &ls->t)) { ls->pdf = 0.0f; return false; } ls->P = P + ls->D * ls->t; /* distribution_pdf_triangles is calculated over triangle area, but we're sampling over solid * angle */ if (UNLIKELY(solid_angle == 0.0f)) { ls->pdf = 0.0f; return false; } else { ls->pdf = 1.0f / solid_angle; } } else { if (UNLIKELY(area == 0.0f)) { return 0.0f; } /* compute random point in triangle. From Eric Heitz's "A Low-Distortion Map Between Triangle * and Square" */ float u = rand.x; float v = rand.y; if (v > u) { u *= 0.5f; v -= u; } else { v *= 0.5f; u -= v; } const float t = 1.0f - u - v; ls->P = u * V[0] + v * V[1] + t * V[2]; /* compute incoming direction, distance and pdf */ ls->D = normalize_len(ls->P - P, &ls->t); ls->pdf = triangle_light_pdf_area_sampling(ls->Ng, -ls->D, ls->t) / area; ls->u = u; ls->v = v; } /* Belongs in distribution.h but can reuse computations here. */ if (!kernel_data.integrator.use_light_tree) { float distribution_area = area; if (has_motion && area != 0.0f) { /* For motion blur need area of triangle at fixed time as used in the CDF. */ triangle_world_space_vertices(kg, object, prim, -1.0f, V); distribution_area = triangle_area(V[0], V[1], V[2]); } ls->pdf_selection = distribution_area * kernel_data.integrator.distribution_pdf_triangles; } return (ls->pdf > 0.0f); } template ccl_device_forceinline bool triangle_light_tree_parameters( KernelGlobals kg, const ccl_global KernelLightTreeEmitter *kemitter, const float3 centroid, const float3 P, const float3 N, const BoundingCone bcone, ccl_private float &cos_theta_u, ccl_private float2 &distance, ccl_private float3 &point_to_centroid) { if (!in_volume_segment) { /* TODO: a cheap substitute for minimal distance between point and primitive. Does it * worth the overhead to compute the accurate minimal distance? */ float min_distance; point_to_centroid = safe_normalize_len(centroid - P, &min_distance); distance = make_float2(min_distance, min_distance); } cos_theta_u = FLT_MAX; float3 vertices[3]; triangle_vertices(kg, kemitter->triangle.id, vertices); bool shape_above_surface = false; for (int i = 0; i < 3; i++) { const float3 corner = vertices[i]; float distance_point_to_corner; const float3 point_to_corner = safe_normalize_len(corner - P, &distance_point_to_corner); cos_theta_u = fminf(cos_theta_u, dot(point_to_centroid, point_to_corner)); shape_above_surface |= dot(point_to_corner, N) > 0; if (!in_volume_segment) { distance.x = fmaxf(distance.x, distance_point_to_corner); } } const bool front_facing = bcone.theta_o != 0.0f || dot(bcone.axis, point_to_centroid) < 0; const bool in_volume = is_zero(N); return (front_facing && shape_above_surface) || in_volume; } CCL_NAMESPACE_END