/* SPDX-FileCopyrightText: 2022-2023 Blender Authors * * SPDX-License-Identifier: GPL-2.0-or-later */ #pragma once #include "draw_object_infos_infos.hh" SHADER_LIBRARY_CREATE_INFO(draw_gpencil) #include "draw_model_lib.glsl" #include "draw_object_infos_lib.glsl" #include "draw_view_lib.glsl" #include "gpu_shader_math_constants_lib.glsl" #include "gpu_shader_math_matrix_transform_lib.glsl" #include "gpu_shader_math_vector_safe_lib.glsl" #include "gpu_shader_utildefines_lib.glsl" #ifndef DRW_GPENCIL_INFO # error Missing additional info draw_gpencil #endif #ifdef GPU_FRAGMENT_SHADER float gpencil_stroke_round_cap_mask( float2 p1, float2 p2, float2 aspect, float thickness, float hardfac) { /* We create our own uv space to avoid issues with triangulation and linear * interpolation artifacts. */ float2 line = p2.xy - p1.xy; float2 pos = gl_FragCoord.xy - p1.xy; float line_len = length(line); float half_line_len = line_len * 0.5f; /* Normalize */ line = (line_len > 0.0f) ? (line / line_len) : float2(1.0f, 0.0f); /* Create a uv space that englobe the whole segment into a capsule. */ float2 uv_end; uv_end.x = max(abs(dot(line, pos) - half_line_len) - half_line_len, 0.0f); uv_end.y = dot(float2(-line.y, line.x), pos); /* Divide by stroke radius. */ uv_end /= thickness; uv_end *= aspect; float dist = clamp(1.0f - length(uv_end) * 2.0f, 0.0f, 1.0f); if (hardfac > 0.999f) { return step(1e-8f, dist); } else { /* Modulate the falloff profile */ float hardness = 1.0f - hardfac; dist = pow(dist, mix(0.01f, 10.0f, hardness)); return smoothstep(0.0f, 1.0f, dist); } } #endif struct PointData { bool cyclical; int mat, stroke_id, point_id, packed_data; }; PointData decode_ma(int4 ma) { PointData data; data.mat = ma.x; data.stroke_id = ma.y; /* Take the absolute because the sign is for cyclical. */ data.point_id = abs(ma.z); /* Aspect, UV Rotation and Hardness. */ data.packed_data = ma.w; /* Cyclical is stored in the sign of the point index. */ data.cyclical = ma.z < 0; return data; } float2 gpencil_decode_aspect(int packed_data) { float asp = float(uint(packed_data) & 0x1FFu) * (1.0f / 255.0f); return (asp > 1.0f) ? float2(1.0f, (asp - 1.0f)) : float2(asp, 1.0f); } float gpencil_decode_uvrot(int packed_data) { uint udata = uint(packed_data); float uvrot = 1e-8f + float((udata & 0x1FE00u) >> 9u) * (1.0f / 255.0f); return ((udata & 0x20000u) != 0u) ? -uvrot : uvrot; } float gpencil_decode_hardness(int packed_data) { return float((uint(packed_data) & 0x3FC0000u) >> 18u) * (1.0f / 255.0f); } float2 gpencil_project_to_screenspace(float4 v, float4 viewport_res) { return ((v.xy / v.w) * 0.5f + 0.5f) * viewport_res.xy; } float gpencil_stroke_thickness_modulate(float thickness, float4 ndc_pos, float4 viewport_res) { /* Modify stroke thickness by object scale. */ thickness = length(to_float3x3(drw_modelmat()) * float3(thickness * M_SQRT1_3)); /* World space point size. */ thickness *= drw_view().winmat[1][1] * viewport_res.y; return thickness; } #ifdef GPU_VERTEX_SHADER int gpencil_stroke_point_id() { return (gl_VertexID & ~GP_IS_STROKE_VERTEX_BIT) >> GP_VERTEX_ID_SHIFT; } bool gpencil_is_stroke_vertex() { return flag_test(gl_VertexID, GP_IS_STROKE_VERTEX_BIT); } /** * Returns value of gl_Position. * * To declare in vertex shader. * in ivec4 ma, ma1, ma2, ma3; * in float4 pos, pos1, pos2, pos3, uv1, uv2, col1, col2, fcol1; * * All of these attributes are quad loaded the same way * as GL_LINES_ADJACENCY would feed a geometry shader: * - ma reference the previous adjacency point. * - ma1 reference the current line first point. * - ma2 reference the current line second point. * - ma3 reference the next adjacency point. * Note that we are rendering quad instances and not using any index buffer *(except for fills). * * Material : x is material index, y is stroke_id, z is point_id, * w is aspect & rotation & hardness packed. * Position : contains thickness in 4th component. * UV : xy is UV for fills, z is U of stroke, w is strength. * * * WARNING: Max attribute count is actually 14 because OSX OpenGL implementation * considers gl_VertexID and gl_InstanceID as vertex attribute. (see #74536) */ float4 gpencil_vertex(float4 viewport_res, gpMaterialFlag material_flags, float2 alignment_rot, /* World Position. */ out float3 out_P, /* World Normal. */ out float3 out_N, /* Vertex Color. */ out float4 out_color, /* Stroke Strength. */ out float out_strength, /* UV coordinates. */ out float2 out_uv, /* Screen-Space segment endpoints. */ out float4 out_sspos, /* Stroke aspect ratio. */ out float2 out_aspect, /* Stroke thickness (x: clamped, y: unclamped). */ out float2 out_thickness, /* Stroke hardness. */ out float out_hardness) { int stroke_point_id = (gl_VertexID & ~GP_IS_STROKE_VERTEX_BIT) >> GP_VERTEX_ID_SHIFT; /* Attribute Loading. */ float4 pos = texelFetch(gp_pos_tx, (stroke_point_id - 1) * 3 + 0); float4 pos1 = texelFetch(gp_pos_tx, (stroke_point_id + 0) * 3 + 0); float4 pos2 = texelFetch(gp_pos_tx, (stroke_point_id + 1) * 3 + 0); float4 pos3 = texelFetch(gp_pos_tx, (stroke_point_id + 2) * 3 + 0); int4 ma = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id - 1) * 3 + 1)); int4 ma1 = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id + 0) * 3 + 1)); int4 ma2 = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id + 1) * 3 + 1)); int4 ma3 = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id + 2) * 3 + 1)); float4 uv1 = texelFetch(gp_pos_tx, (stroke_point_id + 0) * 3 + 2); float4 uv2 = texelFetch(gp_pos_tx, (stroke_point_id + 1) * 3 + 2); float4 col1 = texelFetch(gp_col_tx, (stroke_point_id + 0) * 2 + 0); float4 col2 = texelFetch(gp_col_tx, (stroke_point_id + 1) * 2 + 0); float4 fcol1 = texelFetch(gp_col_tx, (stroke_point_id + 0) * 2 + 1); # define thickness1 pos1.w # define thickness2 pos2.w # define strength1 uv1.w # define strength2 uv2.w float4 out_ndc; if (gpencil_is_stroke_vertex()) { bool is_dot = flag_test(material_flags, GP_STROKE_ALIGNMENT); bool is_squares = !flag_test(material_flags, GP_STROKE_DOTS); bool is_first = (ma.x == -1); bool is_last = (ma3.x == -1); bool is_single = is_first && (ma2.x == -1); PointData point_data1 = decode_ma(ma1); PointData point_data2 = decode_ma(ma2); /* Join the first and last point if the curve is cyclical. */ if (point_data1.cyclical && !is_single) { if (is_first) { /* The first point will have the index of the last point. */ PointData point_data = decode_ma(ma); int last_stroke_id = point_data.stroke_id; ma = floatBitsToInt(texelFetch(gp_pos_tx, (last_stroke_id - 2) * 3 + 1)); pos = texelFetch(gp_pos_tx, (last_stroke_id - 2) * 3 + 0); } if (is_last) { int first_stroke_id = point_data1.stroke_id; ma3 = floatBitsToInt(texelFetch(gp_pos_tx, (first_stroke_id + 2) * 3 + 1)); pos3 = texelFetch(gp_pos_tx, (first_stroke_id + 2) * 3 + 0); } } /* Special Case. Stroke with single vert are rendered as dots. Do not discard them. */ if (!is_dot && is_single) { is_dot = true; is_squares = false; } /* Endpoints, we discard the vertices. */ if (!is_dot && ma2.x == -1) { /* We set the vertex at the camera origin to generate 0 fragments. */ out_ndc = float4(0.0f, 0.0f, -3e36f, 0.0f); return out_ndc; } /* Avoid using a vertex attribute for quad positioning. */ float x = float(gl_VertexID & 1) * 2.0f - 1.0f; /* [-1..1] */ float y = float(gl_VertexID & 2) - 1.0f; /* [-1..1] */ bool use_curr = is_dot || (x == -1.0f); float3 wpos_adj = transform_point(drw_modelmat(), (use_curr) ? pos.xyz : pos3.xyz); float3 wpos1 = transform_point(drw_modelmat(), pos1.xyz); float3 wpos2 = transform_point(drw_modelmat(), pos2.xyz); float3 T; if (is_dot) { /* Shade as facing billboards. */ T = drw_view().viewinv[0].xyz; } else if (use_curr && ma.x != -1) { T = wpos1 - wpos_adj; } else { T = wpos2 - wpos1; } T = safe_normalize(T); float3 B = cross(T, drw_view().viewinv[2].xyz); out_N = normalize(cross(B, T)); float4 ndc_adj = drw_point_world_to_homogenous(wpos_adj); float4 ndc1 = drw_point_world_to_homogenous(wpos1); float4 ndc2 = drw_point_world_to_homogenous(wpos2); out_ndc = (use_curr) ? ndc1 : ndc2; out_P = (use_curr) ? wpos1 : wpos2; out_strength = abs((use_curr) ? strength1 : strength2); float2 ss_adj = gpencil_project_to_screenspace(ndc_adj, viewport_res); float2 ss1 = gpencil_project_to_screenspace(ndc1, viewport_res); float2 ss2 = gpencil_project_to_screenspace(ndc2, viewport_res); /* Screen-space Lines tangents. */ float line_len; float2 line = safe_normalize_and_get_length(ss2 - ss1, line_len); float2 line_adj = safe_normalize((use_curr) ? (ss1 - ss_adj) : (ss_adj - ss2)); float thickness = abs((use_curr) ? thickness1 : thickness2); thickness = gpencil_stroke_thickness_modulate(thickness, out_ndc, viewport_res); /* The radius attribute can have negative values. Make sure that it's not negative by clamping * to 0. */ float clamped_thickness = max(0.0f, thickness); out_uv = float2(x, y) * 0.5f + 0.5f; out_hardness = gpencil_decode_hardness(use_curr ? point_data1.packed_data : point_data2.packed_data); if (is_dot) { uint alignment_mode = material_flags & GP_STROKE_ALIGNMENT; /* For one point strokes use object alignment. */ if (alignment_mode == GP_STROKE_ALIGNMENT_STROKE && is_single) { alignment_mode = GP_STROKE_ALIGNMENT_OBJECT; } float2 x_axis; if (alignment_mode == GP_STROKE_ALIGNMENT_STROKE) { x_axis = (ma2.x == -1) ? line_adj : line; } else if (alignment_mode == GP_STROKE_ALIGNMENT_FIXED) { /* Default for no-material drawing. */ x_axis = float2(1.0f, 0.0f); } else { /* GP_STROKE_ALIGNMENT_OBJECT */ float4 ndc_x = drw_point_world_to_homogenous(wpos1 + drw_modelmat()[0].xyz); float2 ss_x = gpencil_project_to_screenspace(ndc_x, viewport_res); x_axis = safe_normalize(ss_x - ss1); } /* Rotation: Encoded as Cos + Sin sign. */ float uv_rot = gpencil_decode_uvrot(point_data1.packed_data); float rot_sin = sqrt(max(0.0f, 1.0f - uv_rot * uv_rot)) * sign(uv_rot); float rot_cos = abs(uv_rot); /* TODO(@fclem): Optimize these 2 matrix multiply into one by only having one rotation angle * and using a cosine approximation. */ x_axis = float2x2(rot_cos, -rot_sin, rot_sin, rot_cos) * x_axis; x_axis = float2x2(alignment_rot.x, -alignment_rot.y, alignment_rot.y, alignment_rot.x) * x_axis; /* Rotate 90 degrees counter-clockwise. */ float2 y_axis = float2(-x_axis.y, x_axis.x); out_aspect = gpencil_decode_aspect(point_data1.packed_data); x *= out_aspect.x; y *= out_aspect.y; /* Invert for vertex shader. */ out_aspect = 1.0f / out_aspect; out_ndc.xy += (x * x_axis + y * y_axis) * viewport_res.zw * clamped_thickness; out_sspos.xy = ss1; out_sspos.zw = ss1 + x_axis * 0.5f; out_thickness.x = (is_squares) ? 1e18f : (clamped_thickness / out_ndc.w); out_thickness.y = (is_squares) ? 1e18f : (thickness / out_ndc.w); } else { bool is_stroke_start = (ma.x == -1 && x == -1); bool is_stroke_end = (ma3.x == -1 && x == 1); /* Mitter tangent vector. */ float2 miter_tan = safe_normalize(line_adj + line); float miter_dot = dot(miter_tan, line_adj); /* Break corners after a certain angle to avoid really thick corners. */ const float miter_limit = 0.5f; /* cos(60 degrees) */ bool miter_break = (miter_dot < miter_limit); miter_tan = (miter_break || is_stroke_start || is_stroke_end) ? line : (miter_tan / miter_dot); /* Rotate 90 degrees counter-clockwise. */ float2 miter = float2(-miter_tan.y, miter_tan.x); out_sspos.xy = ss1; out_sspos.zw = ss2; out_thickness.x = clamped_thickness / out_ndc.w; out_thickness.y = thickness / out_ndc.w; out_aspect = float2(1.0f); float2 screen_ofs = miter * y; /* Reminder: we packed the cap flag into the sign of strength and thickness sign. */ if ((is_stroke_start && strength1 > 0.0f) || (is_stroke_end && thickness1 > 0.0f) || (miter_break && !is_stroke_start && !is_stroke_end)) { screen_ofs += line * x; } out_ndc.xy += screen_ofs * viewport_res.zw * clamped_thickness; out_uv.x = (use_curr) ? uv1.z : uv2.z; } out_color = (use_curr) ? col1 : col2; } else { out_P = transform_point(drw_modelmat(), pos1.xyz); out_ndc = drw_point_world_to_homogenous(out_P); out_uv = uv1.xy; out_thickness.x = 1e18f; out_thickness.y = 1e20f; out_hardness = 1.0f; out_aspect = float2(1.0f); out_sspos = float4(0.0f); /* Flat normal following camera and object bounds. */ float3 V = drw_world_incident_vector(drw_modelmat()[3].xyz); float3 N = drw_normal_world_to_object(V); N *= drw_object_infos().orco_mul; N = drw_normal_world_to_object(N); out_N = safe_normalize(N); /* Decode fill opacity. */ out_color = float4(fcol1.rgb, floor(fcol1.a / 10.0f) / 10000.0f); /* We still offset the fills a little to avoid overlaps */ out_ndc.z += 0.000002f; } # undef thickness1 # undef thickness2 # undef strength1 # undef strength2 return out_ndc; } float4 gpencil_vertex(float4 viewport_res, out float3 out_P, out float3 out_N, out float4 out_color, out float out_strength, out float2 out_uv, out float4 out_sspos, out float2 out_aspect, out float2 out_thickness, out float out_hardness) { return gpencil_vertex(viewport_res, gpMaterialFlag(0u), float2(1.0f, 0.0f), out_P, out_N, out_color, out_strength, out_uv, out_sspos, out_aspect, out_thickness, out_hardness); } #endif