Applies thin film iridescence to metals in Metallic BSDF and Principled BSDF. To get the complex IOR values for each spectral band from F82 Tint colors, the code uses the parametrization from "Artist Friendly Metallic Fresnel", where the g parameter is set to F82. This IOR is used to find the phase shift, but reflectance is still calculated with the F82 Tint formula after adjusting F0 for the film's IOR. Co-authored-by: Lukas Stockner <lukas@lukasstockner.de> Co-authored-by: Weizhen Huang <weizhen@blender.org> Co-authored-by: RobertMoerland <rmoerlandrj@gmail.com> Pull Request: https://projects.blender.org/blender/blender/pulls/141131
848 lines
21 KiB
C++
848 lines
21 KiB
C++
/* SPDX-FileCopyrightText: 2011-2013 Intel Corporation
|
|
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#pragma once
|
|
|
|
#include "util/math_base.h"
|
|
#include "util/math_float4.h"
|
|
#include "util/types_float3.h"
|
|
#include "util/types_float4.h"
|
|
#include "util/types_int3.h"
|
|
#include "util/types_uint3.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device_inline float3 zero_float3()
|
|
{
|
|
#ifdef __KERNEL_SSE__
|
|
return float3(_mm_setzero_ps());
|
|
#else
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline float3 one_float3()
|
|
{
|
|
return make_float3(1.0f, 1.0f, 1.0f);
|
|
}
|
|
|
|
ccl_device_template_spec float3 make_zero()
|
|
{
|
|
return zero_float3();
|
|
}
|
|
|
|
ccl_device_inline float3 reciprocal(const float3 a)
|
|
{
|
|
#ifdef __KERNEL_SSE__
|
|
/* Don't use _mm_rcp_ps due to poor precision. */
|
|
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
|
|
#else
|
|
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
|
|
#endif
|
|
}
|
|
|
|
#ifndef __KERNEL_METAL__
|
|
|
|
ccl_device_inline float3 operator-(const float3 &a)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
|
|
# else
|
|
return make_float3(-a.x, -a.y, -a.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator*(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_mul_ps(a.m128, b.m128));
|
|
# else
|
|
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator*(const float3 a, const float f)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f)));
|
|
# else
|
|
return make_float3(a.x * f, a.y * f, a.z * f);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator*(const float f, const float3 a)
|
|
{
|
|
# if defined(__KERNEL_SSE__)
|
|
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
|
|
# else
|
|
return make_float3(a.x * f, a.y * f, a.z * f);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator/(const float f, const float3 a)
|
|
{
|
|
# if defined(__KERNEL_SSE__)
|
|
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
|
|
# else
|
|
return make_float3(f / a.x, f / a.y, f / a.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator/(const float3 a, const float f)
|
|
{
|
|
# if defined(__KERNEL_SSE__)
|
|
return float3(_mm_div_ps(a.m128, _mm_set1_ps(f)));
|
|
# else
|
|
float invf = 1.0f / f;
|
|
return make_float3(a.x * invf, a.y * invf, a.z * invf);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator/(const float3 a, const float3 b)
|
|
{
|
|
# if defined(__KERNEL_SSE__)
|
|
return float3(_mm_div_ps(a.m128, b.m128));
|
|
# else
|
|
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator+(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_add_ps(a.m128, b.m128));
|
|
# else
|
|
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator+(const float3 a, const float b)
|
|
{
|
|
return a + make_float3(b);
|
|
}
|
|
|
|
ccl_device_inline float3 operator+(const float a, const float3 b)
|
|
{
|
|
return make_float3(a) + b;
|
|
}
|
|
|
|
ccl_device_inline float3 operator-(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_sub_ps(a.m128, b.m128));
|
|
# else
|
|
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 operator-(const float3 a, const float b)
|
|
{
|
|
return a - make_float3(b);
|
|
}
|
|
|
|
ccl_device_inline float3 operator-(const float a, const float3 b)
|
|
{
|
|
return make_float3(a) - b;
|
|
}
|
|
|
|
ccl_device_inline float3 operator+=(float3 &a, const float3 b)
|
|
{
|
|
return a = a + b;
|
|
}
|
|
|
|
ccl_device_inline float3 operator-=(float3 &a, const float3 b)
|
|
{
|
|
return a = a - b;
|
|
}
|
|
|
|
ccl_device_inline float3 operator*=(float3 &a, const float3 b)
|
|
{
|
|
return a = a * b;
|
|
}
|
|
|
|
ccl_device_inline float3 operator*=(float3 &a, const float f)
|
|
{
|
|
return a = a * f;
|
|
}
|
|
|
|
ccl_device_inline float3 operator/=(float3 &a, const float3 b)
|
|
{
|
|
return a = a / b;
|
|
}
|
|
|
|
ccl_device_inline float3 operator/=(float3 &a, const float f)
|
|
{
|
|
const float invf = 1.0f / f;
|
|
return a = a * invf;
|
|
}
|
|
|
|
# if !(defined(__KERNEL_CUDA__) || defined(__KERNEL_HIP__) || defined(__KERNEL_ONEAPI__))
|
|
ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float3 b)
|
|
{
|
|
a = float3(a) * b;
|
|
return a;
|
|
}
|
|
|
|
ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float f)
|
|
{
|
|
a = float3(a) * f;
|
|
return a;
|
|
}
|
|
|
|
ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float3 b)
|
|
{
|
|
a = float3(a) / b;
|
|
return a;
|
|
}
|
|
|
|
ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float f)
|
|
{
|
|
a = float3(a) / f;
|
|
return a;
|
|
}
|
|
|
|
ccl_device_inline packed_float3 operator+=(packed_float3 &a, const float3 b)
|
|
{
|
|
a = float3(a) + b;
|
|
return a;
|
|
}
|
|
# endif
|
|
|
|
ccl_device_inline bool operator==(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
|
|
# else
|
|
return (a.x == b.x && a.y == b.y && a.z == b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline int3 operator==(const float3 a, const float b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return int3(_mm_castps_si128(_mm_cmpeq_ps(a.m128, make_float3(b).m128)));
|
|
# else
|
|
return make_int3(a.x == b, a.y == b, a.z == b);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline bool operator!=(const float3 a, const float3 b)
|
|
{
|
|
return !(a == b);
|
|
}
|
|
|
|
ccl_device_inline int3 operator>=(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return int3(_mm_castps_si128(_mm_cmpge_ps(a.m128, b.m128)));
|
|
# else
|
|
return make_int3(a.x >= b.x, a.y >= b.y, a.z >= b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline int3 operator<(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return int3(_mm_castps_si128(_mm_cmplt_ps(a.m128, b.m128)));
|
|
# else
|
|
return make_int3(a.x < b.x, a.y < b.y, a.z < b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float dot(const float3 a, const float3 b)
|
|
{
|
|
# if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
|
|
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
|
|
# else
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline int3 operator>(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return int3(_mm_castps_si128(_mm_cmpgt_ps(a.m128, b.m128)));
|
|
# else
|
|
return make_int3(a.x > b.x, a.y > b.y, a.z > b.z);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline int3 operator>(const float3 a, const float b)
|
|
{
|
|
return a > make_float3(b);
|
|
}
|
|
|
|
#endif /* __KERNEL_METAL__ */
|
|
|
|
ccl_device_inline float dot_xy(const float3 a, const float3 b)
|
|
{
|
|
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
|
|
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b));
|
|
#else
|
|
return a.x * b.x + a.y * b.y;
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline float len(const float3 a)
|
|
{
|
|
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
|
|
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
|
|
#else
|
|
return sqrtf(dot(a, a));
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline float reduce_min(const float3 a)
|
|
{
|
|
return min(min(a.x, a.y), a.z);
|
|
}
|
|
|
|
ccl_device_inline float reduce_max(const float3 a)
|
|
{
|
|
return max(max(a.x, a.y), a.z);
|
|
}
|
|
|
|
ccl_device_inline float len_squared(const float3 a)
|
|
{
|
|
return dot(a, a);
|
|
}
|
|
|
|
#ifndef __KERNEL_METAL__
|
|
|
|
ccl_device_inline float distance(const float3 a, const float3 b)
|
|
{
|
|
return len(a - b);
|
|
}
|
|
|
|
ccl_device_inline float3 cross(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
const float4 x = float4(a.m128);
|
|
const float4 y = shuffle<1, 2, 0, 3>(float4(b.m128));
|
|
const float4 z = float4(_mm_mul_ps(shuffle<1, 2, 0, 3>(float4(a.m128)), float4(b.m128)));
|
|
|
|
return float3(shuffle<1, 2, 0, 3>(msub(x, y, z)).m128);
|
|
# else
|
|
return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 normalize(const float3 a)
|
|
{
|
|
# if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
|
|
const __m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
|
|
return float3(_mm_div_ps(a.m128, norm));
|
|
# else
|
|
return a / len(a);
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 min(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_min_ps(a.m128, b.m128));
|
|
# else
|
|
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 max(const float3 a, const float3 b)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_max_ps(a.m128, b.m128));
|
|
# else
|
|
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 clamp(const float3 a, const float3 mn, const float3 mx)
|
|
{
|
|
return min(max(a, mn), mx);
|
|
}
|
|
|
|
ccl_device_inline float3 fabs(const float3 a)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
# ifdef __KERNEL_NEON__
|
|
return float3(vabsq_f32(a.m128));
|
|
# else
|
|
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
|
|
return float3(_mm_and_ps(a.m128, mask));
|
|
# endif
|
|
# else
|
|
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
|
|
# endif
|
|
}
|
|
|
|
/* The floating-point remainder of the division operation a / b calculated by this function is
|
|
* exactly the value a - iquot * b, where iquot is a / b with its fractional part truncated.
|
|
*
|
|
* The returned value has the same sign as a and is less than b in magnitude. */
|
|
ccl_device_inline float3 fmod(const float3 a, const float b)
|
|
{
|
|
# if defined(__KERNEL_NEON__)
|
|
/* Use native Neon instructions.
|
|
* The logic is the same as the SSE code below, but on Apple M2 Ultra this seems to be faster.
|
|
* Possibly due to some runtime checks in _mm_round_ps which do not get properly inlined. */
|
|
const float32x4_t iquot = vrndq_f32(a / b);
|
|
return float3(vsubq_f32(a, vmulq_f32(iquot, vdupq_n_f32(b))));
|
|
# elif defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
|
|
const __m128 iquot = _mm_round_ps(a / b, _MM_FROUND_TRUNC);
|
|
return float3(_mm_sub_ps(a, _mm_mul_ps(iquot, _mm_set1_ps(b))));
|
|
# else
|
|
return make_float3(fmodf(a.x, b), fmodf(a.y, b), fmodf(a.z, b));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 fmod(const float3 a, const float3 b)
|
|
{
|
|
# if defined(__KERNEL_NEON__)
|
|
const float32x4_t iquot = vrndq_f32(vdivq_f32(a.m128, b.m128));
|
|
return float3(vsubq_f32(a, vmulq_f32(iquot, b.m128)));
|
|
# elif defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
|
|
const __m128 div = _mm_div_ps(a.m128, b.m128);
|
|
const __m128 iquot = _mm_round_ps(div, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
|
|
return float3(_mm_sub_ps(a.m128, _mm_mul_ps(iquot, b.m128)));
|
|
# else
|
|
return make_float3(fmodf(a.x, b.x), fmodf(a.y, b.y), fmodf(a.z, b.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 sqrt(const float3 a)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_sqrt_ps(a));
|
|
# else
|
|
return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 round(const float3 a)
|
|
{
|
|
# if defined(__KERNEL_NEON__)
|
|
return float3(vrndnq_f32(a.m128));
|
|
# elif defined(__KERNEL_SSE__)
|
|
return float3(_mm_round_ps(a.m128, _MM_FROUND_NINT));
|
|
# else
|
|
return make_float3(roundf(a.x), roundf(a.y), roundf(a.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 floor(const float3 a)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_floor_ps(a));
|
|
# else
|
|
return make_float3(floorf(a.x), floorf(a.y), floorf(a.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 ceil(const float3 a)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float3(_mm_ceil_ps(a));
|
|
# else
|
|
return make_float3(ceilf(a.x), ceilf(a.y), ceilf(a.z));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float3 mix(const float3 a, const float3 b, const float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float3 mix(const float3 a, const float3 b, const float3 t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float3 saturate(const float3 a)
|
|
{
|
|
return make_float3(saturatef(a.x), saturatef(a.y), saturatef(a.z));
|
|
}
|
|
|
|
ccl_device_inline float3 exp(const float3 v)
|
|
{
|
|
return make_float3(expf(v.x), expf(v.y), expf(v.z));
|
|
}
|
|
|
|
ccl_device_inline float3 log(const float3 v)
|
|
{
|
|
return make_float3(logf(v.x), logf(v.y), logf(v.z));
|
|
}
|
|
|
|
ccl_device_inline float3 sin(const float3 v)
|
|
{
|
|
return make_float3(sinf(v.x), sinf(v.y), sinf(v.z));
|
|
}
|
|
|
|
ccl_device_inline float3 cos(const float3 v)
|
|
{
|
|
return make_float3(cosf(v.x), cosf(v.y), cosf(v.z));
|
|
}
|
|
|
|
ccl_device_inline float3 tan(const float3 v)
|
|
{
|
|
return make_float3(tanf(v.x), tanf(v.y), tanf(v.z));
|
|
}
|
|
|
|
ccl_device_inline float3 atan2(const float3 y, const float3 x)
|
|
{
|
|
return make_float3(atan2f(y.x, x.x), atan2f(y.y, x.y), atan2f(y.z, x.z));
|
|
}
|
|
|
|
ccl_device_inline float3 reflect(const float3 incident, const float3 unit_normal)
|
|
{
|
|
return incident - 2.0f * unit_normal * dot(incident, unit_normal);
|
|
}
|
|
|
|
ccl_device_inline float3 refract(const float3 incident, const float3 normal, const float eta)
|
|
{
|
|
const float k = 1.0f - eta * eta * (1.0f - dot(normal, incident) * dot(normal, incident));
|
|
if (k < 0.0f) {
|
|
return zero_float3();
|
|
}
|
|
return eta * incident - (eta * dot(normal, incident) + sqrt(k)) * normal;
|
|
}
|
|
|
|
ccl_device_inline float3 faceforward(const float3 vector,
|
|
const float3 incident,
|
|
const float3 reference)
|
|
{
|
|
return (dot(reference, incident) < 0.0f) ? vector : -vector;
|
|
}
|
|
#endif
|
|
|
|
ccl_device_inline float3 safe_sqrt(const float3 a)
|
|
{
|
|
return sqrt(max(a, zero_float3()));
|
|
}
|
|
|
|
ccl_device_inline float3 project(const float3 v, const float3 v_proj)
|
|
{
|
|
const float len_squared = dot(v_proj, v_proj);
|
|
return (len_squared != 0.0f) ? (dot(v, v_proj) / len_squared) * v_proj : zero_float3();
|
|
}
|
|
|
|
ccl_device_inline float3 normalize_len(const float3 a, ccl_private float *t)
|
|
{
|
|
*t = len(a);
|
|
const float x = 1.0f / *t;
|
|
return a * x;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_normalize(const float3 a)
|
|
{
|
|
const float t = len(a);
|
|
return (t != 0.0f) ? a * (1.0f / t) : a;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_normalize_fallback(const float3 a, const float3 fallback)
|
|
{
|
|
const float t = len(a);
|
|
return (t != 0.0f) ? a * (1.0f / t) : fallback;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_normalize_len(const float3 a, ccl_private float *t)
|
|
{
|
|
*t = len(a);
|
|
return (*t != 0.0f) ? a / (*t) : a;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_divide(const float3 a, const float3 b)
|
|
{
|
|
return make_float3((b.x != 0.0f) ? a.x / b.x : 0.0f,
|
|
(b.y != 0.0f) ? a.y / b.y : 0.0f,
|
|
(b.z != 0.0f) ? a.z / b.z : 0.0f);
|
|
}
|
|
|
|
ccl_device_inline float3 safe_divide(const float3 a, const float b)
|
|
{
|
|
return (b != 0.0f) ? a / b : zero_float3();
|
|
}
|
|
|
|
ccl_device_inline float3 interp(const float3 a, const float3 b, const float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float3 sqr(const float3 a)
|
|
{
|
|
return a * a;
|
|
}
|
|
|
|
ccl_device_inline bool is_zero(const float3 a)
|
|
{
|
|
#ifdef __KERNEL_SSE__
|
|
return a == make_float3(0.0f);
|
|
#else
|
|
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline bool any_zero(const float3 a)
|
|
{
|
|
return (a.x == 0.0f || a.y == 0.0f || a.z == 0.0f);
|
|
}
|
|
|
|
ccl_device_inline float reduce_add(const float3 a)
|
|
{
|
|
#if defined(__KERNEL_SSE__) && defined(__KERNEL_NEON__)
|
|
__m128 t = a.m128;
|
|
t = vsetq_lane_f32(0.0f, t, 3);
|
|
return vaddvq_f32(t);
|
|
#else
|
|
return (a.x + a.y + a.z);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline float average(const float3 a)
|
|
{
|
|
return reduce_add(a) * (1.0f / 3.0f);
|
|
}
|
|
|
|
ccl_device_inline bool isequal(const float3 a, const float3 b)
|
|
{
|
|
#if defined(__KERNEL_METAL__)
|
|
return all(a == b);
|
|
#else
|
|
return a == b;
|
|
#endif
|
|
}
|
|
|
|
template<class MaskType>
|
|
ccl_device_inline float3 select(const MaskType mask, const float3 a, const float3 b)
|
|
{
|
|
#if defined(__KERNEL_METAL__)
|
|
return metal::select(b, a, bool3(mask));
|
|
#elif defined(__KERNEL_SSE__)
|
|
# ifdef __KERNEL_SSE42__
|
|
return float3(_mm_blendv_ps(b.m128, a.m128, _mm_castsi128_ps(mask.m128)));
|
|
# else
|
|
return float4(
|
|
_mm_or_ps(_mm_and_ps(_mm_castsi128_ps(mask), a), _mm_andnot_ps(_mm_castsi128_ps(mask), b)));
|
|
# endif
|
|
#else
|
|
return make_float3((mask.x) ? a.x : b.x, (mask.y) ? a.y : b.y, (mask.z) ? a.z : b.z);
|
|
#endif
|
|
}
|
|
|
|
template<class MaskType> ccl_device_inline float3 mask(const MaskType mask, const float3 a)
|
|
{
|
|
/* Replace elements of x with zero where mask isn't set. */
|
|
return select(mask, a, zero_float3());
|
|
}
|
|
|
|
/* Consistent name for this would be pow, but HIP compiler crashes in name mangling. */
|
|
ccl_device_inline float3 power(const float3 v, const float e)
|
|
{
|
|
return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e));
|
|
}
|
|
|
|
ccl_device_inline float3 safe_pow(const float3 a, const float3 b)
|
|
{
|
|
return make_float3(safe_powf(a.x, b.x), safe_powf(a.y, b.y), safe_powf(a.z, b.z));
|
|
}
|
|
|
|
ccl_device_inline auto isequal_mask(const float3 a, const float3 b)
|
|
{
|
|
#if defined(__KERNEL_METAL__)
|
|
return a == b;
|
|
#elif defined __KERNEL_NEON__
|
|
return int3(vreinterpretq_m128i_s32(vceqq_f32(a.m128, b.m128)));
|
|
#elif defined(__KERNEL_SSE__)
|
|
return int3(_mm_castps_si128(_mm_cmpeq_ps(a.m128, b.m128)));
|
|
#else
|
|
return make_int3(a.x == b.x, a.y == b.y, a.z == b.z);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline auto is_zero_mask(const float3 a)
|
|
{
|
|
return isequal_mask(a, zero_float3());
|
|
}
|
|
|
|
ccl_device_inline float3 safe_floored_fmod(const float3 a, const float3 b)
|
|
{
|
|
return select(is_zero_mask(b), zero_float3(), a - floor(a / b) * b);
|
|
}
|
|
|
|
ccl_device_inline float3 wrap(const float3 value, const float3 max, const float3 min)
|
|
{
|
|
return safe_floored_fmod(value - min, max - min) + min;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_fmod(const float3 a, const float3 b)
|
|
{
|
|
return select(is_zero_mask(b), zero_float3(), fmod(a, b));
|
|
}
|
|
|
|
ccl_device_inline float3 compatible_sign(const float3 v)
|
|
{
|
|
return make_float3(compatible_signf(v.x), compatible_signf(v.y), compatible_signf(v.z));
|
|
}
|
|
|
|
ccl_device_inline bool isfinite_safe(const float3 v)
|
|
{
|
|
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
|
|
}
|
|
|
|
ccl_device_inline float3 ensure_finite(const float3 v)
|
|
{
|
|
float3 r = v;
|
|
if (!isfinite_safe(r.x)) {
|
|
r.x = 0.0f;
|
|
}
|
|
if (!isfinite_safe(r.y)) {
|
|
r.y = 0.0f;
|
|
}
|
|
if (!isfinite_safe(r.z)) {
|
|
r.z = 0.0f;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/* Triangle */
|
|
|
|
ccl_device_inline float triangle_area(const ccl_private float3 &v1,
|
|
const ccl_private float3 &v2,
|
|
const ccl_private float3 &v3)
|
|
{
|
|
return len(cross(v3 - v2, v1 - v2)) * 0.5f;
|
|
}
|
|
|
|
/* Orthonormal vectors */
|
|
|
|
ccl_device_inline void make_orthonormals(const float3 N,
|
|
ccl_private float3 *a,
|
|
ccl_private float3 *b)
|
|
{
|
|
#if 0
|
|
if (fabsf(N.y) >= 0.999f) {
|
|
*a = make_float3(1, 0, 0);
|
|
*b = make_float3(0, 0, 1);
|
|
return;
|
|
}
|
|
if (fabsf(N.z) >= 0.999f) {
|
|
*a = make_float3(1, 0, 0);
|
|
*b = make_float3(0, 1, 0);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (N.x != N.y || N.x != N.z) {
|
|
*a = make_float3(N.z - N.y, N.x - N.z, N.y - N.x); //(1,1,1)x N
|
|
}
|
|
else {
|
|
*a = make_float3(N.z - N.y, N.x + N.z, -N.y - N.x); //(-1,1,1)x N
|
|
}
|
|
|
|
*a = normalize(*a);
|
|
*b = cross(N, *a);
|
|
}
|
|
|
|
/* Rotation of point around axis and angle */
|
|
|
|
ccl_device_inline float3 rotate_around_axis(const float3 p, const float3 axis, const float angle)
|
|
{
|
|
const float costheta = cosf(angle);
|
|
const float sintheta = sinf(angle);
|
|
float3 r;
|
|
|
|
r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) +
|
|
(((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) +
|
|
(((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z);
|
|
|
|
r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) +
|
|
((costheta + (1 - costheta) * axis.y * axis.y) * p.y) +
|
|
(((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z);
|
|
|
|
r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) +
|
|
(((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) +
|
|
((costheta + (1 - costheta) * axis.z * axis.z) * p.z);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Calculate the angle between the two vectors a and b.
|
|
* The usual approach `acos(dot(a, b))` has severe precision issues for small angles,
|
|
* which are avoided by this method.
|
|
* Based on "Mangled Angles" from https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
|
|
*/
|
|
ccl_device_inline float precise_angle(const float3 a, const float3 b)
|
|
{
|
|
return 2.0f * atan2f(len(a - b), len(a + b));
|
|
}
|
|
|
|
/* Tangent of the angle between vectors a and b. */
|
|
ccl_device_inline float tan_angle(const float3 a, const float3 b)
|
|
{
|
|
return len(cross(a, b)) / dot(a, b);
|
|
}
|
|
|
|
/* projections */
|
|
ccl_device_inline float2 map_to_tube(const float3 co)
|
|
{
|
|
float len;
|
|
float u;
|
|
float v;
|
|
len = sqrtf(co.x * co.x + co.y * co.y);
|
|
if (len > 0.0f) {
|
|
u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f;
|
|
v = (co.z + 1.0f) * 0.5f;
|
|
}
|
|
else {
|
|
u = v = 0.0f;
|
|
}
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
ccl_device_inline float2 map_to_sphere(const float3 co)
|
|
{
|
|
const float l = dot(co, co);
|
|
float u;
|
|
float v;
|
|
if (l > 0.0f) {
|
|
if (UNLIKELY(co.x == 0.0f && co.y == 0.0f)) {
|
|
u = 0.0f; /* Otherwise domain error. */
|
|
}
|
|
else {
|
|
u = (0.5f - atan2f(co.x, co.y) * M_1_2PI_F);
|
|
}
|
|
v = 1.0f - safe_acosf(co.z / sqrtf(l)) * M_1_PI_F;
|
|
}
|
|
else {
|
|
u = v = 0.0f;
|
|
}
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
ccl_device_inline void copy_v3_v3(ccl_private float *r, const float3 val)
|
|
{
|
|
r[0] = val.x;
|
|
r[1] = val.y;
|
|
r[2] = val.z;
|
|
}
|
|
|
|
ccl_device_inline uint3 float3_as_uint3(const float3 f)
|
|
{
|
|
#ifdef __KERNEL_METAL__
|
|
return as_type<uint3>(f);
|
|
#else
|
|
return make_uint3(__float_as_uint(f.x), __float_as_uint(f.y), __float_as_uint(f.z));
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline float3 uint3_as_float3(const uint3 f)
|
|
{
|
|
#ifdef __KERNEL_METAL__
|
|
return as_type<float3>(f);
|
|
#else
|
|
return make_float3(__uint_as_float(f.x), __uint_as_float(f.y), __uint_as_float(f.z));
|
|
#endif
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|