Files
test2/source/blender/draw/intern/draw_cache_impl_volume.cc
Omar Emara ff3b2226fb GPU: Refactor texture samplers
This patch refactors the texture samples code by mainly splitting the
eGPUSamplerState enum into multiple smaller enums and packing them
inside a GPUSamplerState struct. This was done because many members of
the enum were mutually exclusive, which was worked around during setting
up the samplers in the various backends, and additionally made the API
confusing, like the GPU_texture_wrap_mode function, which had two
mutually exclusive parameters.

The new structure also improved and clarified the backend sampler cache,
reducing the cache size from 514 samplers to just 130 samplers, which
also slightly improved the initialization time. Further, the
GPU_SAMPLER_MAX signal value was naturally incorporated into the
structure using the GPU_SAMPLER_STATE_TYPE_INTERNAL type.

The only expected functional change is in the realtime compositor, which
now supports per-axis repetition control, utilizing new API functions
for that purpose.

This patch is loosely based on an older patch D14366 by Ethan Hall.

Pull Request: https://projects.blender.org/blender/blender/pulls/105642
2023-04-04 15:16:07 +02:00

349 lines
11 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2017 Blender Foundation */
/** \file
* \ingroup draw
*
* \brief Volume API for render engines
*/
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math_base.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "DNA_object_types.h"
#include "DNA_volume_types.h"
#include "BKE_global.h"
#include "BKE_volume.h"
#include "BKE_volume_render.h"
#include "GPU_batch.h"
#include "GPU_capabilities.h"
#include "GPU_texture.h"
#include "DEG_depsgraph_query.h"
#include "DRW_render.h"
#include "draw_cache.h" /* own include */
#include "draw_cache_impl.h" /* own include */
static void volume_batch_cache_clear(Volume *volume);
/* ---------------------------------------------------------------------- */
/* Volume GPUBatch Cache */
struct VolumeBatchCache {
/* 3D textures */
ListBase grids;
/* Wireframe */
struct {
GPUVertBuf *pos_nor_in_order;
GPUBatch *batch;
} face_wire;
/* Surface for selection */
GPUBatch *selection_surface;
/* settings to determine if cache is invalid */
bool is_dirty;
};
/* GPUBatch cache management. */
static bool volume_batch_cache_valid(Volume *volume)
{
VolumeBatchCache *cache = static_cast<VolumeBatchCache *>(volume->batch_cache);
return (cache && cache->is_dirty == false);
}
static void volume_batch_cache_init(Volume *volume)
{
VolumeBatchCache *cache = static_cast<VolumeBatchCache *>(volume->batch_cache);
if (!cache) {
volume->batch_cache = cache = MEM_cnew<VolumeBatchCache>(__func__);
}
else {
memset(cache, 0, sizeof(*cache));
}
cache->is_dirty = false;
}
void DRW_volume_batch_cache_validate(Volume *volume)
{
if (!volume_batch_cache_valid(volume)) {
volume_batch_cache_clear(volume);
volume_batch_cache_init(volume);
}
}
static VolumeBatchCache *volume_batch_cache_get(Volume *volume)
{
DRW_volume_batch_cache_validate(volume);
return static_cast<VolumeBatchCache *>(volume->batch_cache);
}
void DRW_volume_batch_cache_dirty_tag(Volume *volume, int mode)
{
VolumeBatchCache *cache = static_cast<VolumeBatchCache *>(volume->batch_cache);
if (cache == nullptr) {
return;
}
switch (mode) {
case BKE_VOLUME_BATCH_DIRTY_ALL:
cache->is_dirty = true;
break;
default:
BLI_assert(0);
}
}
static void volume_batch_cache_clear(Volume *volume)
{
VolumeBatchCache *cache = static_cast<VolumeBatchCache *>(volume->batch_cache);
if (!cache) {
return;
}
LISTBASE_FOREACH (DRWVolumeGrid *, grid, &cache->grids) {
MEM_SAFE_FREE(grid->name);
DRW_TEXTURE_FREE_SAFE(grid->texture);
}
BLI_freelistN(&cache->grids);
GPU_VERTBUF_DISCARD_SAFE(cache->face_wire.pos_nor_in_order);
GPU_BATCH_DISCARD_SAFE(cache->face_wire.batch);
GPU_BATCH_DISCARD_SAFE(cache->selection_surface);
}
void DRW_volume_batch_cache_free(Volume *volume)
{
volume_batch_cache_clear(volume);
MEM_SAFE_FREE(volume->batch_cache);
}
struct VolumeWireframeUserData {
Volume *volume;
Scene *scene;
};
static void drw_volume_wireframe_cb(
void *userdata, const float (*verts)[3], const int (*edges)[2], int totvert, int totedge)
{
VolumeWireframeUserData *data = static_cast<VolumeWireframeUserData *>(userdata);
Scene *scene = data->scene;
Volume *volume = data->volume;
VolumeBatchCache *cache = static_cast<VolumeBatchCache *>(volume->batch_cache);
const bool do_hq_normals = (scene->r.perf_flag & SCE_PERF_HQ_NORMALS) != 0 ||
GPU_use_hq_normals_workaround();
/* Create vertex buffer. */
static GPUVertFormat format = {0};
static GPUVertFormat format_hq = {0};
static struct {
uint pos_id, nor_id;
uint pos_hq_id, nor_hq_id;
} attr_id;
if (format.attr_len == 0) {
attr_id.pos_id = GPU_vertformat_attr_add(&format, "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
attr_id.nor_id = GPU_vertformat_attr_add(
&format, "nor", GPU_COMP_I10, 4, GPU_FETCH_INT_TO_FLOAT_UNIT);
attr_id.pos_id = GPU_vertformat_attr_add(&format_hq, "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
attr_id.nor_id = GPU_vertformat_attr_add(
&format_hq, "nor", GPU_COMP_I16, 3, GPU_FETCH_INT_TO_FLOAT_UNIT);
}
static float normal[3] = {1.0f, 0.0f, 0.0f};
GPUNormal packed_normal;
GPU_normal_convert_v3(&packed_normal, normal, do_hq_normals);
uint pos_id = do_hq_normals ? attr_id.pos_hq_id : attr_id.pos_id;
uint nor_id = do_hq_normals ? attr_id.nor_hq_id : attr_id.nor_id;
cache->face_wire.pos_nor_in_order = GPU_vertbuf_create_with_format(do_hq_normals ? &format_hq :
&format);
GPU_vertbuf_data_alloc(cache->face_wire.pos_nor_in_order, totvert);
GPU_vertbuf_attr_fill(cache->face_wire.pos_nor_in_order, pos_id, verts);
GPU_vertbuf_attr_fill_stride(cache->face_wire.pos_nor_in_order, nor_id, 0, &packed_normal);
/* Create wiredata. */
GPUVertBuf *vbo_wiredata = GPU_vertbuf_calloc();
DRW_vertbuf_create_wiredata(vbo_wiredata, totvert);
if (volume->display.wireframe_type == VOLUME_WIREFRAME_POINTS) {
/* Create batch. */
cache->face_wire.batch = GPU_batch_create(
GPU_PRIM_POINTS, cache->face_wire.pos_nor_in_order, nullptr);
}
else {
/* Create edge index buffer. */
GPUIndexBufBuilder elb;
GPU_indexbuf_init(&elb, GPU_PRIM_LINES, totedge, totvert);
for (int i = 0; i < totedge; i++) {
GPU_indexbuf_add_line_verts(&elb, edges[i][0], edges[i][1]);
}
GPUIndexBuf *ibo = GPU_indexbuf_build(&elb);
/* Create batch. */
cache->face_wire.batch = GPU_batch_create_ex(
GPU_PRIM_LINES, cache->face_wire.pos_nor_in_order, ibo, GPU_BATCH_OWNS_INDEX);
}
GPU_batch_vertbuf_add(cache->face_wire.batch, vbo_wiredata, true);
}
GPUBatch *DRW_volume_batch_cache_get_wireframes_face(Volume *volume)
{
if (volume->display.wireframe_type == VOLUME_WIREFRAME_NONE) {
return nullptr;
}
VolumeBatchCache *cache = volume_batch_cache_get(volume);
if (cache->face_wire.batch == nullptr) {
const VolumeGrid *volume_grid = BKE_volume_grid_active_get_for_read(volume);
if (volume_grid == nullptr) {
return nullptr;
}
/* Create wireframe from OpenVDB tree. */
const DRWContextState *draw_ctx = DRW_context_state_get();
VolumeWireframeUserData userdata;
userdata.volume = volume;
userdata.scene = draw_ctx->scene;
BKE_volume_grid_wireframe(volume, volume_grid, drw_volume_wireframe_cb, &userdata);
}
return cache->face_wire.batch;
}
static void drw_volume_selection_surface_cb(
void *userdata, float (*verts)[3], int (*tris)[3], int totvert, int tottris)
{
Volume *volume = static_cast<Volume *>(userdata);
VolumeBatchCache *cache = static_cast<VolumeBatchCache *>(volume->batch_cache);
static GPUVertFormat format = {0};
static uint pos_id;
if (format.attr_len == 0) {
pos_id = GPU_vertformat_attr_add(&format, "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
}
/* Create vertex buffer. */
GPUVertBuf *vbo_surface = GPU_vertbuf_create_with_format(&format);
GPU_vertbuf_data_alloc(vbo_surface, totvert);
GPU_vertbuf_attr_fill(vbo_surface, pos_id, verts);
/* Create index buffer. */
GPUIndexBufBuilder elb;
GPU_indexbuf_init(&elb, GPU_PRIM_TRIS, tottris, totvert);
for (int i = 0; i < tottris; i++) {
GPU_indexbuf_add_tri_verts(&elb, UNPACK3(tris[i]));
}
GPUIndexBuf *ibo_surface = GPU_indexbuf_build(&elb);
cache->selection_surface = GPU_batch_create_ex(
GPU_PRIM_TRIS, vbo_surface, ibo_surface, GPU_BATCH_OWNS_VBO | GPU_BATCH_OWNS_INDEX);
}
GPUBatch *DRW_volume_batch_cache_get_selection_surface(Volume *volume)
{
VolumeBatchCache *cache = volume_batch_cache_get(volume);
if (cache->selection_surface == nullptr) {
const VolumeGrid *volume_grid = BKE_volume_grid_active_get_for_read(volume);
if (volume_grid == nullptr) {
return nullptr;
}
BKE_volume_grid_selection_surface(
volume, volume_grid, drw_volume_selection_surface_cb, volume);
}
return cache->selection_surface;
}
static DRWVolumeGrid *volume_grid_cache_get(const Volume *volume,
const VolumeGrid *grid,
VolumeBatchCache *cache)
{
const char *name = BKE_volume_grid_name(grid);
/* Return cached grid. */
LISTBASE_FOREACH (DRWVolumeGrid *, cache_grid, &cache->grids) {
if (STREQ(cache_grid->name, name)) {
return cache_grid;
}
}
/* Allocate new grid. */
DRWVolumeGrid *cache_grid = MEM_cnew<DRWVolumeGrid>(__func__);
cache_grid->name = BLI_strdup(name);
BLI_addtail(&cache->grids, cache_grid);
/* TODO: can we load this earlier, avoid accessing the global and take
* advantage of dependency graph multi-threading? */
BKE_volume_load(volume, G.main);
/* Test if we support textures with the number of channels. */
size_t channels = BKE_volume_grid_channels(grid);
if (!ELEM(channels, 1, 3)) {
return cache_grid;
}
/* Remember if grid was loaded. If it was not, we want to unload it after the GPUTexture has been
* created. */
const bool was_loaded = BKE_volume_grid_is_loaded(grid);
DenseFloatVolumeGrid dense_grid;
if (BKE_volume_grid_dense_floats(volume, grid, &dense_grid)) {
copy_m4_m4(cache_grid->texture_to_object, dense_grid.texture_to_object);
invert_m4_m4(cache_grid->object_to_texture, dense_grid.texture_to_object);
/* Create GPU texture. */
eGPUTextureFormat format = (channels == 3) ? GPU_RGB16F : GPU_R16F;
cache_grid->texture = GPU_texture_create_3d("volume_grid",
UNPACK3(dense_grid.resolution),
1,
format,
GPU_TEXTURE_USAGE_SHADER_READ |
GPU_TEXTURE_USAGE_MIP_SWIZZLE_VIEW,
dense_grid.voxels);
/* The texture can be null if the resolution along one axis is larger than
* GL_MAX_3D_TEXTURE_SIZE. */
if (cache_grid->texture != nullptr) {
GPU_texture_swizzle_set(cache_grid->texture, (channels == 3) ? "rgb1" : "rrr1");
GPU_texture_extend_mode(cache_grid->texture, GPU_SAMPLER_EXTEND_MODE_CLAMP_TO_BORDER);
BKE_volume_dense_float_grid_clear(&dense_grid);
}
else {
MEM_freeN(dense_grid.voxels);
printf("Error: Could not allocate 3D texture for volume.\n");
}
}
/* Free grid from memory if it wasn't previously loaded. */
if (!was_loaded) {
BKE_volume_grid_unload(volume, grid);
}
return cache_grid;
}
DRWVolumeGrid *DRW_volume_batch_cache_get_grid(Volume *volume, const VolumeGrid *volume_grid)
{
VolumeBatchCache *cache = volume_batch_cache_get(volume);
DRWVolumeGrid *grid = volume_grid_cache_get(volume, volume_grid, cache);
return (grid->texture != nullptr) ? grid : nullptr;
}
int DRW_volume_material_count_get(Volume *volume)
{
return max_ii(1, volume->totcol);
}