Files
test2/source/blender/io/collada/GeometryExporter.cpp
Hans Goudey 7966cd16d6 Mesh: Replace MPoly struct with offset indices
Implements #95967.

Currently the `MPoly` struct is 12 bytes, and stores the index of a
face's first corner and the number of corners/verts/edges. Polygons
and corners are always created in order by Blender, meaning each
face's corners will be after the previous face's corners. We can take
advantage of this fact and eliminate the redundancy in mesh face
storage by only storing a single integer corner offset for each face.
The size of the face is then encoded by the offset of the next face.
The size of a single integer is 4 bytes, so this reduces memory
usage by 3 times.

The same method is used for `CurvesGeometry`, so Blender already has
an abstraction to simplify using these offsets called `OffsetIndices`.
This class is used to easily retrieve a range of corner indices for
each face. This also gives the opportunity for sharing some logic with
curves.

Another benefit of the change is that the offsets and sizes stored in
`MPoly` can no longer disagree with each other. Storing faces in the
order of their corners can simplify some code too.

Face/polygon variables now use the `IndexRange` type, which comes with
quite a few utilities that can simplify code.

Some:
- The offset integer array has to be one longer than the face count to
  avoid a branch for every face, which means the data is no longer part
  of the mesh's `CustomData`.
- We lose the ability to "reference" an original mesh's offset array
  until more reusable CoW from #104478 is committed. That will be added
  in a separate commit.
- Since they aren't part of `CustomData`, poly offsets often have to be
  copied manually.
- To simplify using `OffsetIndices` in many places, some functions and
  structs in headers were moved to only compile in C++.
- All meshes created by Blender use the same order for faces and face
  corners, but just in case, meshes with mismatched order are fixed by
  versioning code.
- `MeshPolygon.totloop` is no longer editable in RNA. This API break is
  necessary here unfortunately. It should be worth it in 3.6, since
  that's the best way to allow loading meshes from 4.0, which is
  important for an LTS version.

Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00

703 lines
22 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup collada
*/
#include <sstream>
#include "COLLADABUUtils.h"
#include "COLLADASWPrimitves.h"
#include "COLLADASWSource.h"
#include "COLLADASWVertices.h"
#include "GeometryExporter.h"
#include "DNA_meshdata_types.h"
#include "BLI_math_vector_types.hh"
#include "BLI_utildefines.h"
#include "BKE_attribute.hh"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_lib_id.h"
#include "BKE_material.h"
#include "BKE_mesh.hh"
#include "collada_internal.h"
#include "collada_utils.h"
using blender::float3;
using blender::Span;
void GeometryExporter::exportGeom()
{
Scene *sce = blender_context.get_scene();
openLibrary();
GeometryFunctor gf;
gf.forEachMeshObjectInExportSet<GeometryExporter>(
sce, *this, this->export_settings.get_export_set());
closeLibrary();
}
void GeometryExporter::operator()(Object *ob)
{
bool use_instantiation = this->export_settings.get_use_object_instantiation();
Mesh *me = bc_get_mesh_copy(blender_context,
ob,
this->export_settings.get_export_mesh_type(),
this->export_settings.get_apply_modifiers(),
this->export_settings.get_triangulate());
std::string geom_id = get_geometry_id(ob, use_instantiation);
std::vector<Normal> nor;
std::vector<BCPolygonNormalsIndices> norind;
/* Skip if linked geometry was already exported from another reference */
if (use_instantiation && exportedGeometry.find(geom_id) != exportedGeometry.end()) {
return;
}
std::string geom_name = (use_instantiation) ? id_name(ob->data) : id_name(ob);
geom_name = encode_xml(geom_name);
exportedGeometry.insert(geom_id);
bool has_color = bool(CustomData_has_layer(&me->fdata, CD_MCOL));
create_normals(nor, norind, me);
/* openMesh(geoId, geoName, meshId) */
openMesh(geom_id, geom_name);
/* writes <source> for vertex coords */
createVertsSource(geom_id, me);
/* writes <source> for normal coords */
createNormalsSource(geom_id, me, nor);
bool has_uvs = bool(CustomData_has_layer(&me->ldata, CD_PROP_FLOAT2));
/* writes <source> for uv coords if mesh has uv coords */
if (has_uvs) {
createTexcoordsSource(geom_id, me);
}
if (has_color) {
createVertexColorSource(geom_id, me);
}
/* <vertices> */
COLLADASW::Vertices verts(mSW);
verts.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX));
COLLADASW::InputList &input_list = verts.getInputList();
COLLADASW::Input input(COLLADASW::InputSemantic::POSITION,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::POSITION));
input_list.push_back(input);
verts.add();
createLooseEdgeList(ob, me, geom_id);
/* Only create poly-lists if number of faces > 0. */
if (me->totface > 0) {
/* XXX slow */
if (ob->totcol) {
for (int a = 0; a < ob->totcol; a++) {
create_mesh_primitive_list(a, has_uvs, has_color, ob, me, geom_id, norind);
}
}
else {
create_mesh_primitive_list(0, has_uvs, has_color, ob, me, geom_id, norind);
}
}
closeMesh();
closeGeometry();
if (this->export_settings.get_include_shapekeys()) {
Key *key = BKE_key_from_object(ob);
if (key) {
blender::MutableSpan<float3> positions = me->vert_positions_for_write();
KeyBlock *kb = (KeyBlock *)key->block.first;
/* skip the basis */
kb = kb->next;
for (; kb; kb = kb->next) {
BKE_keyblock_convert_to_mesh(
kb, reinterpret_cast<float(*)[3]>(positions.data()), me->totvert);
export_key_mesh(ob, me, kb);
}
}
}
BKE_id_free(nullptr, me);
}
void GeometryExporter::export_key_mesh(Object *ob, Mesh *me, KeyBlock *kb)
{
std::string geom_id = get_geometry_id(ob, false) + "_morph_" + translate_id(kb->name);
std::vector<Normal> nor;
std::vector<BCPolygonNormalsIndices> norind;
if (exportedGeometry.find(geom_id) != exportedGeometry.end()) {
return;
}
std::string geom_name = kb->name;
exportedGeometry.insert(geom_id);
bool has_color = bool(CustomData_has_layer(&me->fdata, CD_MCOL));
create_normals(nor, norind, me);
// openMesh(geoId, geoName, meshId)
openMesh(geom_id, geom_name);
/* writes <source> for vertex coords */
createVertsSource(geom_id, me);
/* writes <source> for normal coords */
createNormalsSource(geom_id, me, nor);
bool has_uvs = bool(CustomData_has_layer(&me->ldata, CD_PROP_FLOAT2));
/* writes <source> for uv coords if mesh has uv coords */
if (has_uvs) {
createTexcoordsSource(geom_id, me);
}
if (has_color) {
createVertexColorSource(geom_id, me);
}
/* <vertices> */
COLLADASW::Vertices verts(mSW);
verts.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX));
COLLADASW::InputList &input_list = verts.getInputList();
COLLADASW::Input input(COLLADASW::InputSemantic::POSITION,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::POSITION));
input_list.push_back(input);
verts.add();
// createLooseEdgeList(ob, me, geom_id, norind);
/* XXX slow */
if (ob->totcol) {
for (int a = 0; a < ob->totcol; a++) {
create_mesh_primitive_list(a, has_uvs, has_color, ob, me, geom_id, norind);
}
}
else {
create_mesh_primitive_list(0, has_uvs, has_color, ob, me, geom_id, norind);
}
closeMesh();
closeGeometry();
}
void GeometryExporter::createLooseEdgeList(Object *ob, Mesh *me, std::string &geom_id)
{
using namespace blender;
const Span<MEdge> edges = me->edges();
int edges_in_linelist = 0;
std::vector<uint> edge_list;
int index;
/* Find all loose edges in Mesh
* and save vertex indices in edge_list */
const bke::LooseEdgeCache &loose_edges = me->loose_edges();
if (loose_edges.count > 0) {
for (const int64_t i : edges.index_range()) {
if (loose_edges.is_loose_bits[i]) {
const MEdge *edge = &edges[i];
edges_in_linelist += 1;
edge_list.push_back(edge->v1);
edge_list.push_back(edge->v2);
}
}
}
if (edges_in_linelist > 0) {
/* Create the list of loose edges */
COLLADASW::Lines lines(mSW);
lines.setCount(edges_in_linelist);
COLLADASW::InputList &til = lines.getInputList();
/* creates <input> in <lines> for vertices */
COLLADASW::Input input1(COLLADASW::InputSemantic::VERTEX,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX),
0);
til.push_back(input1);
lines.prepareToAppendValues();
for (index = 0; index < edges_in_linelist; index++) {
lines.appendValues(edge_list[2 * index + 1]);
lines.appendValues(edge_list[2 * index]);
}
lines.finish();
}
}
static void prepareToAppendValues(bool is_triangulated,
COLLADASW::PrimitivesBase &primitive_list,
std::vector<ulong> &vcount_list)
{
/* performs the actual writing */
if (is_triangulated) {
((COLLADASW::Triangles &)primitive_list).prepareToAppendValues();
}
else {
/* sets <vcount> */
primitive_list.setVCountList(vcount_list);
((COLLADASW::Polylist &)primitive_list).prepareToAppendValues();
}
}
static void finish_and_delete_primitive_List(bool is_triangulated,
COLLADASW::PrimitivesBase *primitive_list)
{
if (is_triangulated) {
((COLLADASW::Triangles *)primitive_list)->finish();
}
else {
((COLLADASW::Polylist *)primitive_list)->finish();
}
delete primitive_list;
}
static COLLADASW::PrimitivesBase *create_primitive_list(bool is_triangulated,
COLLADASW::StreamWriter *mSW)
{
COLLADASW::PrimitivesBase *primitive_list;
if (is_triangulated) {
primitive_list = new COLLADASW::Triangles(mSW);
}
else {
primitive_list = new COLLADASW::Polylist(mSW);
}
return primitive_list;
}
static bool collect_vertex_counts_per_poly(Mesh *me,
int material_index,
std::vector<ulong> &vcount_list)
{
const blender::OffsetIndices polys = me->polys();
const blender::bke::AttributeAccessor attributes = me->attributes();
const blender::VArray<int> material_indices = attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
bool is_triangulated = true;
/* Expecting that the material index is always 0 if the mesh has no materials assigned */
for (const int i : polys.index_range()) {
if (material_indices[i] == material_index) {
const int vertex_count = polys[i].size();
vcount_list.push_back(vertex_count);
if (vertex_count != 3) {
is_triangulated = false;
}
}
}
return is_triangulated;
}
std::string GeometryExporter::makeVertexColorSourceId(std::string &geom_id, const char *layer_name)
{
std::string result = getIdBySemantics(geom_id, COLLADASW::InputSemantic::COLOR) + "-" +
layer_name;
return result;
}
void GeometryExporter::create_mesh_primitive_list(short material_index,
bool has_uvs,
bool has_color,
Object *ob,
Mesh *me,
std::string &geom_id,
std::vector<BCPolygonNormalsIndices> &norind)
{
const blender::OffsetIndices polys = me->polys();
const Span<int> corner_verts = me->corner_verts();
std::vector<ulong> vcount_list;
bool is_triangulated = collect_vertex_counts_per_poly(me, material_index, vcount_list);
int polygon_count = vcount_list.size();
/* no faces using this material */
if (polygon_count == 0) {
fprintf(
stderr, "%s: material with index %d is not used.\n", id_name(ob).c_str(), material_index);
return;
}
Material *ma = ob->totcol ? BKE_object_material_get(ob, material_index + 1) : nullptr;
COLLADASW::PrimitivesBase *primitive_list = create_primitive_list(is_triangulated, mSW);
/* sets count attribute in <polylist> */
primitive_list->setCount(polygon_count);
/* sets material name */
if (ma) {
std::string material_id = get_material_id(ma);
std::ostringstream ostr;
ostr << translate_id(material_id);
primitive_list->setMaterial(ostr.str());
}
COLLADASW::Input vertex_input(COLLADASW::InputSemantic::VERTEX,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX),
0);
COLLADASW::Input normals_input(COLLADASW::InputSemantic::NORMAL,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::NORMAL),
1);
COLLADASW::InputList &til = primitive_list->getInputList();
til.push_back(vertex_input);
til.push_back(normals_input);
/* if mesh has uv coords writes <input> for TEXCOORD */
int num_layers = CustomData_number_of_layers(&me->ldata, CD_PROP_FLOAT2);
int active_uv_index = CustomData_get_active_layer_index(&me->ldata, CD_PROP_FLOAT2);
for (int i = 0; i < num_layers; i++) {
int layer_index = CustomData_get_layer_index_n(&me->ldata, CD_PROP_FLOAT2, i);
if (!this->export_settings.get_active_uv_only() || layer_index == active_uv_index) {
// char *name = CustomData_get_layer_name(&me->ldata, CD_PROP_FLOAT2, i);
COLLADASW::Input texcoord_input(
COLLADASW::InputSemantic::TEXCOORD,
makeUrl(makeTexcoordSourceId(geom_id, i, this->export_settings.get_active_uv_only())),
2, /* this is only until we have optimized UV sets */
(this->export_settings.get_active_uv_only()) ? 0 : layer_index - 1 /* set (0,1,2,...) */
);
til.push_back(texcoord_input);
}
}
int totlayer_mcol = CustomData_number_of_layers(&me->ldata, CD_PROP_BYTE_COLOR);
if (totlayer_mcol > 0) {
int map_index = 0;
for (int a = 0; a < totlayer_mcol; a++) {
const char *layer_name = bc_CustomData_get_layer_name(&me->ldata, CD_PROP_BYTE_COLOR, a);
COLLADASW::Input input4(COLLADASW::InputSemantic::COLOR,
makeUrl(makeVertexColorSourceId(geom_id, layer_name)),
(has_uvs) ? 3 : 2, /* all color layers have same index order */
map_index /* set number equals color map index */
);
til.push_back(input4);
map_index++;
}
}
/* performs the actual writing */
prepareToAppendValues(is_triangulated, *primitive_list, vcount_list);
const blender::bke::AttributeAccessor attributes = me->attributes();
const blender::VArray<int> material_indices = attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
/* <p> */
int texindex = 0;
for (const int i : polys.index_range()) {
const blender::IndexRange poly = polys[i];
int loop_count = poly.size();
if (material_indices[i] == material_index) {
BCPolygonNormalsIndices normal_indices = norind[i];
for (int j = 0; j < loop_count; j++) {
const int vert = corner_verts[poly[j]];
primitive_list->appendValues(vert);
primitive_list->appendValues(normal_indices[j]);
if (has_uvs) {
primitive_list->appendValues(texindex + j);
}
if (has_color) {
primitive_list->appendValues(texindex + j);
}
}
}
texindex += loop_count;
}
finish_and_delete_primitive_List(is_triangulated, primitive_list);
}
void GeometryExporter::createVertsSource(std::string geom_id, Mesh *me)
{
const Span<float3> positions = me->vert_positions();
COLLADASW::FloatSourceF source(mSW);
source.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::POSITION));
source.setArrayId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::POSITION) +
ARRAY_ID_SUFFIX);
source.setAccessorCount(positions.size());
source.setAccessorStride(3);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("X");
param.push_back("Y");
param.push_back("Z");
/* main function, it creates <source id = "">, <float_array id = ""
* count = ""> */
source.prepareToAppendValues();
/* appends data to <float_array> */
for (const int i : positions.index_range()) {
Vector co;
if (export_settings.get_apply_global_orientation()) {
float co_c[3];
copy_v3_v3(co_c, positions[i]);
bc_add_global_transform(co, co_c, export_settings.get_global_transform());
}
else {
copy_v3_v3(co, positions[i]);
}
source.appendValues(co[0], co[1], co[2]);
}
source.finish();
}
void GeometryExporter::createVertexColorSource(std::string geom_id, Mesh *me)
{
/* Find number of vertex color layers */
int totlayer_mcol = CustomData_number_of_layers(&me->ldata, CD_PROP_BYTE_COLOR);
if (totlayer_mcol == 0) {
return;
}
int map_index = 0;
for (int a = 0; a < totlayer_mcol; a++) {
map_index++;
const MLoopCol *mloopcol = (const MLoopCol *)CustomData_get_layer_n(
&me->ldata, CD_PROP_BYTE_COLOR, a);
COLLADASW::FloatSourceF source(mSW);
const char *layer_name = bc_CustomData_get_layer_name(&me->ldata, CD_PROP_BYTE_COLOR, a);
std::string layer_id = makeVertexColorSourceId(geom_id, layer_name);
source.setId(layer_id);
source.setNodeName(layer_name);
source.setArrayId(layer_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(me->totloop);
source.setAccessorStride(4);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("R");
param.push_back("G");
param.push_back("B");
param.push_back("A");
source.prepareToAppendValues();
const blender::OffsetIndices polys = me->polys();
for (const int i : polys.index_range()) {
for (const int corner : polys[i]) {
const MLoopCol *mlc = &mloopcol[corner];
source.appendValues(mlc->r / 255.0f, mlc->g / 255.0f, mlc->b / 255.0f, mlc->a / 255.0f);
}
}
source.finish();
}
}
std::string GeometryExporter::makeTexcoordSourceId(std::string &geom_id,
int layer_index,
bool is_single_layer)
{
char suffix[20];
if (is_single_layer) {
suffix[0] = '\0';
}
else {
BLI_snprintf(suffix, sizeof(suffix), "-%d", layer_index);
}
return getIdBySemantics(geom_id, COLLADASW::InputSemantic::TEXCOORD) + suffix;
}
void GeometryExporter::createTexcoordsSource(std::string geom_id, Mesh *me)
{
int totuv = me->totloop;
const blender::OffsetIndices polys = me->polys();
int num_layers = CustomData_number_of_layers(&me->ldata, CD_PROP_FLOAT2);
/* write <source> for each layer
* each <source> will get id like meshName + "map-channel-1" */
int active_uv_index = CustomData_get_active_layer_index(&me->ldata, CD_PROP_FLOAT2);
for (int a = 0; a < num_layers; a++) {
int layer_index = CustomData_get_layer_index_n(&me->ldata, CD_PROP_FLOAT2, a);
if (!this->export_settings.get_active_uv_only() || layer_index == active_uv_index) {
const blender::float2 *uv_map = static_cast<const blender::float2 *>(
CustomData_get_layer_n(&me->ldata, CD_PROP_FLOAT2, a));
COLLADASW::FloatSourceF source(mSW);
std::string layer_id = makeTexcoordSourceId(
geom_id, a, this->export_settings.get_active_uv_only());
source.setId(layer_id);
source.setArrayId(layer_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(totuv);
source.setAccessorStride(2);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("S");
param.push_back("T");
source.prepareToAppendValues();
for (const int i : polys.index_range()) {
for (const int corner : polys[i]) {
source.appendValues(uv_map[corner][0], uv_map[corner][1]);
}
}
source.finish();
}
}
}
bool operator<(const Normal &a, const Normal &b)
{
/* Only needed to sort normal vectors and find() them later in a map. */
return a.x < b.x || (a.x == b.x && (a.y < b.y || (a.y == b.y && a.z < b.z)));
}
void GeometryExporter::createNormalsSource(std::string geom_id, Mesh *me, std::vector<Normal> &nor)
{
COLLADASW::FloatSourceF source(mSW);
source.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::NORMAL));
source.setArrayId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::NORMAL) + ARRAY_ID_SUFFIX);
source.setAccessorCount(ulong(nor.size()));
source.setAccessorStride(3);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("X");
param.push_back("Y");
param.push_back("Z");
source.prepareToAppendValues();
std::vector<Normal>::iterator it;
for (it = nor.begin(); it != nor.end(); it++) {
Normal &n = *it;
Vector no{n.x, n.y, n.z};
if (export_settings.get_apply_global_orientation()) {
bc_add_global_transform(no, export_settings.get_global_transform());
}
source.appendValues(no[0], no[1], no[2]);
}
source.finish();
}
void GeometryExporter::create_normals(std::vector<Normal> &normals,
std::vector<BCPolygonNormalsIndices> &polygons_normals,
Mesh *me)
{
using namespace blender;
std::map<Normal, uint> shared_normal_indices;
int last_normal_index = -1;
const Span<float3> positions = me->vert_positions();
const float(*vert_normals)[3] = BKE_mesh_vert_normals_ensure(me);
const blender::OffsetIndices polys = me->polys();
const Span<int> corner_verts = me->corner_verts();
const float(*lnors)[3] = nullptr;
bool use_custom_normals = false;
const bke::AttributeAccessor attributes = me->attributes();
const VArray<bool> sharp_faces = attributes.lookup_or_default<bool>(
"sharp_face", ATTR_DOMAIN_FACE, false);
BKE_mesh_calc_normals_split(me);
if (CustomData_has_layer(&me->ldata, CD_NORMAL)) {
lnors = (float(*)[3])CustomData_get_layer(&me->ldata, CD_NORMAL);
use_custom_normals = true;
}
for (const int poly_index : polys.index_range()) {
const IndexRange poly = polys[poly_index];
bool use_vert_normals = use_custom_normals || !sharp_faces[poly_index];
if (!use_vert_normals) {
/* For flat faces use face normal as vertex normal: */
const float3 vector = blender::bke::mesh::poly_normal_calc(positions,
corner_verts.slice(poly));
Normal n = {vector[0], vector[1], vector[2]};
normals.push_back(n);
last_normal_index++;
}
BCPolygonNormalsIndices poly_indices;
for (const int corner : poly) {
if (use_vert_normals) {
float normalized[3];
if (use_custom_normals) {
normalize_v3_v3(normalized, lnors[corner]);
}
else {
copy_v3_v3(normalized, vert_normals[corner_verts[corner]]);
normalize_v3(normalized);
}
Normal n = {normalized[0], normalized[1], normalized[2]};
if (shared_normal_indices.find(n) != shared_normal_indices.end()) {
poly_indices.add_index(shared_normal_indices[n]);
}
else {
last_normal_index++;
poly_indices.add_index(last_normal_index);
shared_normal_indices[n] = last_normal_index;
normals.push_back(n);
}
}
else {
poly_indices.add_index(last_normal_index);
}
}
polygons_normals.push_back(poly_indices);
}
}
std::string GeometryExporter::getIdBySemantics(std::string geom_id,
COLLADASW::InputSemantic::Semantics type,
std::string other_suffix)
{
return geom_id + getSuffixBySemantic(type) + other_suffix;
}
COLLADASW::URI GeometryExporter::getUrlBySemantics(std::string geom_id,
COLLADASW::InputSemantic::Semantics type,
std::string other_suffix)
{
std::string id(getIdBySemantics(geom_id, type, other_suffix));
return COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, id);
}
COLLADASW::URI GeometryExporter::makeUrl(std::string id)
{
return COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, id);
}