Files
test2/source/blender/modifiers/intern/MOD_normal_edit.cc
Hans Goudey 7966cd16d6 Mesh: Replace MPoly struct with offset indices
Implements #95967.

Currently the `MPoly` struct is 12 bytes, and stores the index of a
face's first corner and the number of corners/verts/edges. Polygons
and corners are always created in order by Blender, meaning each
face's corners will be after the previous face's corners. We can take
advantage of this fact and eliminate the redundancy in mesh face
storage by only storing a single integer corner offset for each face.
The size of the face is then encoded by the offset of the next face.
The size of a single integer is 4 bytes, so this reduces memory
usage by 3 times.

The same method is used for `CurvesGeometry`, so Blender already has
an abstraction to simplify using these offsets called `OffsetIndices`.
This class is used to easily retrieve a range of corner indices for
each face. This also gives the opportunity for sharing some logic with
curves.

Another benefit of the change is that the offsets and sizes stored in
`MPoly` can no longer disagree with each other. Storing faces in the
order of their corners can simplify some code too.

Face/polygon variables now use the `IndexRange` type, which comes with
quite a few utilities that can simplify code.

Some:
- The offset integer array has to be one longer than the face count to
  avoid a branch for every face, which means the data is no longer part
  of the mesh's `CustomData`.
- We lose the ability to "reference" an original mesh's offset array
  until more reusable CoW from #104478 is committed. That will be added
  in a separate commit.
- Since they aren't part of `CustomData`, poly offsets often have to be
  copied manually.
- To simplify using `OffsetIndices` in many places, some functions and
  structs in headers were moved to only compile in C++.
- All meshes created by Blender use the same order for faces and face
  corners, but just in case, meshes with mismatched order are fixed by
  versioning code.
- `MeshPolygon.totloop` is no longer editable in RNA. This API break is
  necessary here unfortunately. It should be worth it in 3.6, since
  that's the best way to allow loading meshes from 4.0, which is
  important for an LTS version.

Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00

777 lines
27 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup modifiers
*/
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_bitmap.h"
#include "BLI_math.h"
#include "BLT_translation.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "BKE_attribute.hh"
#include "BKE_context.h"
#include "BKE_deform.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.hh"
#include "BKE_screen.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "RNA_prototypes.h"
#include "DEG_depsgraph_query.h"
#include "MOD_ui_common.h"
#include "MOD_util.h"
static void generate_vert_coordinates(Mesh *mesh,
Object *ob,
Object *ob_center,
const float offset[3],
const int verts_num,
float (*r_cos)[3],
float r_size[3])
{
using namespace blender;
float min_co[3], max_co[3];
float diff[3];
bool do_diff = false;
INIT_MINMAX(min_co, max_co);
const Span<float3> positions = mesh->vert_positions();
for (int i = 0; i < mesh->totvert; i++) {
copy_v3_v3(r_cos[i], positions[i]);
if (r_size != nullptr && ob_center == nullptr) {
minmax_v3v3_v3(min_co, max_co, r_cos[i]);
}
}
/* Get size (i.e. deformation of the spheroid generating normals),
* either from target object, or own geometry. */
if (r_size != nullptr) {
if (ob_center != nullptr) {
/* Using 'scale' as 'size' here. The input object is typically an empty
* who's scale is used to define an ellipsoid instead of a simple sphere. */
/* Not we are not interested in signs here - they are even troublesome actually,
* due to security clamping! */
abs_v3_v3(r_size, ob_center->scale);
}
else {
/* Set size. */
sub_v3_v3v3(r_size, max_co, min_co);
}
/* Error checks - we do not want one or more of our sizes to be null! */
if (is_zero_v3(r_size)) {
r_size[0] = r_size[1] = r_size[2] = 1.0f;
}
else {
CLAMP_MIN(r_size[0], FLT_EPSILON);
CLAMP_MIN(r_size[1], FLT_EPSILON);
CLAMP_MIN(r_size[2], FLT_EPSILON);
}
}
if (ob_center != nullptr) {
float inv_obmat[4][4];
/* Translate our coordinates so that center of ob_center is at (0, 0, 0). */
/* Get ob_center (world) coordinates in ob local coordinates.
* No need to take into account ob_center's space here, see #44027. */
invert_m4_m4(inv_obmat, ob->object_to_world);
mul_v3_m4v3(diff, inv_obmat, ob_center->object_to_world[3]);
negate_v3(diff);
do_diff = true;
}
else if (offset != nullptr && !is_zero_v3(offset)) {
negate_v3_v3(diff, offset);
do_diff = true;
}
/* Else, no need to change coordinates! */
if (do_diff) {
int i = verts_num;
while (i--) {
add_v3_v3(r_cos[i], diff);
}
}
}
/* Note this modifies nos_new in-place. */
static void mix_normals(const float mix_factor,
const MDeformVert *dvert,
const int defgrp_index,
const bool use_invert_vgroup,
const float mix_limit,
const short mix_mode,
const int verts_num,
const blender::Span<int> corner_verts,
blender::float3 *nos_old,
blender::float3 *nos_new)
{
/* Mix with org normals... */
float *facs = nullptr, *wfac;
blender::float3 *no_new, *no_old;
int i;
if (dvert) {
facs = static_cast<float *>(
MEM_malloc_arrayN(size_t(corner_verts.size()), sizeof(*facs), __func__));
BKE_defvert_extract_vgroup_to_loopweights(dvert,
defgrp_index,
verts_num,
corner_verts.data(),
corner_verts.size(),
use_invert_vgroup,
facs);
}
for (i = corner_verts.size(), no_new = nos_new, no_old = nos_old, wfac = facs; i--;
no_new++, no_old++, wfac++) {
const float fac = facs ? *wfac * mix_factor : mix_factor;
switch (mix_mode) {
case MOD_NORMALEDIT_MIX_ADD:
add_v3_v3(*no_new, *no_old);
normalize_v3(*no_new);
break;
case MOD_NORMALEDIT_MIX_SUB:
sub_v3_v3(*no_new, *no_old);
normalize_v3(*no_new);
break;
case MOD_NORMALEDIT_MIX_MUL:
mul_v3_v3(*no_new, *no_old);
normalize_v3(*no_new);
break;
case MOD_NORMALEDIT_MIX_COPY:
break;
}
interp_v3_v3v3_slerp_safe(
*no_new,
*no_old,
*no_new,
(mix_limit < float(M_PI)) ? min_ff(fac, mix_limit / angle_v3v3(*no_new, *no_old)) : fac);
}
MEM_SAFE_FREE(facs);
}
/* Check poly normals and new loop normals are compatible, otherwise flip polygons
* (and invert matching poly normals). */
static bool polygons_check_flip(blender::MutableSpan<int> corner_verts,
blender::MutableSpan<int> corner_edges,
blender::float3 *nos,
CustomData *ldata,
const blender::OffsetIndices<int> polys,
const blender::Span<blender::float3> poly_normals)
{
MDisps *mdisp = static_cast<MDisps *>(
CustomData_get_layer_for_write(ldata, CD_MDISPS, corner_verts.size()));
bool flipped = false;
for (const int i : polys.index_range()) {
const blender::IndexRange poly = polys[i];
float norsum[3] = {0.0f};
for (const int64_t j : poly) {
add_v3_v3(norsum, nos[j]);
}
if (!normalize_v3(norsum)) {
continue;
}
/* If average of new loop normals is opposed to polygon normal, flip polygon. */
if (dot_v3v3(poly_normals[i], norsum) < 0.0f) {
BKE_mesh_polygon_flip_ex(poly.start(),
poly.size(),
corner_verts.data(),
corner_edges.data(),
ldata,
reinterpret_cast<float(*)[3]>(nos),
mdisp,
true);
flipped = true;
}
}
return flipped;
}
static void normalEditModifier_do_radial(NormalEditModifierData *enmd,
const ModifierEvalContext * /*ctx*/,
Object *ob,
Mesh *mesh,
short (*clnors)[2],
blender::MutableSpan<blender::float3> loop_normals,
const short mix_mode,
const float mix_factor,
const float mix_limit,
const MDeformVert *dvert,
const int defgrp_index,
const bool use_invert_vgroup,
blender::Span<blender::float3> vert_positions,
const blender::Span<MEdge> edges,
blender::MutableSpan<bool> sharp_edges,
blender::MutableSpan<int> corner_verts,
blender::MutableSpan<int> corner_edges,
const blender::OffsetIndices<int> polys)
{
Object *ob_target = enmd->target;
const bool do_polynors_fix = (enmd->flag & MOD_NORMALEDIT_NO_POLYNORS_FIX) == 0;
float(*cos)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(vert_positions.size()), sizeof(*cos), __func__));
blender::Array<blender::float3> nos(corner_verts.size());
float size[3];
BLI_bitmap *done_verts = BLI_BITMAP_NEW(size_t(vert_positions.size()), __func__);
generate_vert_coordinates(mesh, ob, ob_target, enmd->offset, vert_positions.size(), cos, size);
/**
* size gives us our spheroid coefficients `(A, B, C)`.
* Then, we want to find out for each vert its (a, b, c) triple (proportional to (A, B, C) one).
*
* Ellipsoid basic equation: `(x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1`.
* Since we want to find (a, b, c) matching this equation and proportional to (A, B, C),
* we can do:
* <pre>
* m = B / A
* n = C / A
* </pre>
*
* hence:
* <pre>
* (x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1
* -> b^2*c^2*x^2 + a^2*c^2*y^2 + a^2*b^2*z^2 = a^2*b^2*c^2
* b = ma
* c = na
* -> m^2*a^2*n^2*a^2*x^2 + a^2*n^2*a^2*y^2 + a^2*m^2*a^2*z^2 = a^2*m^2*a^2*n^2*a^2
* -> m^2*n^2*a^4*x^2 + n^2*a^4*y^2 + m^2*a^4*z^2 = m^2*n^2*a^6
* -> a^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (m^2*n^2) = x^2 + (y^2 / m^2) + (z^2 / n^2)
* -> b^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (n^2) = (m^2 * x^2) + y^2 + (m^2 * z^2 / n^2)
* -> c^2 = (m^2*n^2*x^2 + n^2y^2 + m^2z^2) / (m^2) = (n^2 * x^2) + (n^2 * y^2 / m^2) + z^2
* </pre>
*
* All we have to do now is compute normal of the spheroid at that point:
* <pre>
* n = (x / a^2, y / b^2, z / c^2)
* </pre>
* And we are done!
*/
{
const float a = size[0], b = size[1], c = size[2];
const float m2 = (b * b) / (a * a);
const float n2 = (c * c) / (a * a);
/* We reuse cos to now store the ellipsoid-normal of the verts! */
for (const int64_t i : corner_verts.index_range()) {
const int vidx = corner_verts[i];
float *co = cos[vidx];
if (!BLI_BITMAP_TEST(done_verts, vidx)) {
const float x2 = co[0] * co[0];
const float y2 = co[1] * co[1];
const float z2 = co[2] * co[2];
const float a2 = x2 + (y2 / m2) + (z2 / n2);
const float b2 = (m2 * x2) + y2 + (m2 * z2 / n2);
const float c2 = (n2 * x2) + (n2 * y2 / m2) + z2;
co[0] /= a2;
co[1] /= b2;
co[2] /= c2;
normalize_v3(co);
BLI_BITMAP_ENABLE(done_verts, vidx);
}
nos[i] = co;
}
}
if (!loop_normals.is_empty()) {
mix_normals(mix_factor,
dvert,
defgrp_index,
use_invert_vgroup,
mix_limit,
mix_mode,
vert_positions.size(),
corner_verts,
loop_normals.data(),
nos.data());
}
if (do_polynors_fix &&
polygons_check_flip(
corner_verts, corner_edges, nos.data(), &mesh->ldata, polys, mesh->poly_normals())) {
BKE_mesh_tag_face_winding_changed(mesh);
}
const bool *sharp_faces = static_cast<const bool *>(
CustomData_get_layer_named(&mesh->pdata, CD_PROP_BOOL, "sharp_face"));
blender::bke::mesh::normals_loop_custom_set(vert_positions,
edges,
polys,
corner_verts,
corner_edges,
mesh->vert_normals(),
mesh->poly_normals(),
sharp_faces,
sharp_edges,
nos,
clnors);
MEM_freeN(cos);
MEM_freeN(done_verts);
}
static void normalEditModifier_do_directional(NormalEditModifierData *enmd,
const ModifierEvalContext * /*ctx*/,
Object *ob,
Mesh *mesh,
short (*clnors)[2],
blender::MutableSpan<blender::float3> loop_normals,
const short mix_mode,
const float mix_factor,
const float mix_limit,
const MDeformVert *dvert,
const int defgrp_index,
const bool use_invert_vgroup,
const blender::Span<blender::float3> positions,
const blender::Span<MEdge> edges,
blender::MutableSpan<bool> sharp_edges,
blender::MutableSpan<int> corner_verts,
blender::MutableSpan<int> corner_edges,
const blender::OffsetIndices<int> polys)
{
Object *ob_target = enmd->target;
const bool do_polynors_fix = (enmd->flag & MOD_NORMALEDIT_NO_POLYNORS_FIX) == 0;
const bool use_parallel_normals = (enmd->flag & MOD_NORMALEDIT_USE_DIRECTION_PARALLEL) != 0;
blender::Array<blender::float3> nos(corner_verts.size());
float target_co[3];
int i;
/* Get target's center coordinates in ob local coordinates. */
float mat[4][4];
invert_m4_m4(mat, ob->object_to_world);
mul_m4_m4m4(mat, mat, ob_target->object_to_world);
copy_v3_v3(target_co, mat[3]);
if (use_parallel_normals) {
float no[3];
sub_v3_v3v3(no, target_co, enmd->offset);
normalize_v3(no);
for (i = corner_verts.size(); i--;) {
copy_v3_v3(nos[i], no);
}
}
else {
float(*cos)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(size_t(positions.size()), sizeof(*cos), __func__));
generate_vert_coordinates(mesh, ob, ob_target, nullptr, positions.size(), cos, nullptr);
BLI_bitmap *done_verts = BLI_BITMAP_NEW(size_t(positions.size()), __func__);
/* We reuse cos to now store the 'to target' normal of the verts! */
for (const int64_t i : corner_verts.index_range()) {
const int vidx = corner_verts[i];
float *co = cos[vidx];
if (!BLI_BITMAP_TEST(done_verts, vidx)) {
sub_v3_v3v3(co, target_co, co);
normalize_v3(co);
BLI_BITMAP_ENABLE(done_verts, vidx);
}
nos[i] = co;
}
MEM_freeN(done_verts);
MEM_freeN(cos);
}
if (!loop_normals.is_empty()) {
mix_normals(mix_factor,
dvert,
defgrp_index,
use_invert_vgroup,
mix_limit,
mix_mode,
positions.size(),
corner_verts,
loop_normals.data(),
nos.data());
}
if (do_polynors_fix &&
polygons_check_flip(
corner_verts, corner_edges, nos.data(), &mesh->ldata, polys, mesh->poly_normals())) {
BKE_mesh_tag_face_winding_changed(mesh);
}
const bool *sharp_faces = static_cast<const bool *>(
CustomData_get_layer_named(&mesh->pdata, CD_PROP_BOOL, "sharp_face"));
blender::bke::mesh::normals_loop_custom_set(positions,
edges,
polys,
corner_verts,
corner_edges,
mesh->vert_normals(),
mesh->poly_normals(),
sharp_faces,
sharp_edges,
nos,
clnors);
}
static bool is_valid_target(NormalEditModifierData *enmd)
{
if (enmd->mode == MOD_NORMALEDIT_MODE_RADIAL) {
return true;
}
if ((enmd->mode == MOD_NORMALEDIT_MODE_DIRECTIONAL) && enmd->target) {
return true;
}
return false;
}
static bool is_valid_target_with_error(const Object *ob, NormalEditModifierData *enmd)
{
if (is_valid_target(enmd)) {
return true;
}
BKE_modifier_set_error(ob, (ModifierData *)enmd, "Invalid target settings");
return false;
}
static Mesh *normalEditModifier_do(NormalEditModifierData *enmd,
const ModifierEvalContext *ctx,
Object *ob,
Mesh *mesh)
{
using namespace blender;
const bool use_invert_vgroup = ((enmd->flag & MOD_NORMALEDIT_INVERT_VGROUP) != 0);
const bool use_current_clnors = !((enmd->mix_mode == MOD_NORMALEDIT_MIX_COPY) &&
(enmd->mix_factor == 1.0f) && (enmd->defgrp_name[0] == '\0') &&
(enmd->mix_limit == float(M_PI)));
/* Do not run that modifier at all if autosmooth is disabled! */
if (!is_valid_target_with_error(ctx->object, enmd) || mesh->totloop == 0) {
return mesh;
}
/* XXX TODO(Rohan Rathi):
* Once we fully switch to Mesh evaluation of modifiers,
* we can expect to get that flag from the COW copy.
* But for now, it is lost in the DM intermediate step,
* so we need to directly check orig object's data. */
#if 0
if (!(mesh->flag & ME_AUTOSMOOTH))
#else
if (!(((Mesh *)ob->data)->flag & ME_AUTOSMOOTH))
#endif
{
BKE_modifier_set_error(
ob, (ModifierData *)enmd, "Enable 'Auto Smooth' in Object Data Properties");
return mesh;
}
Mesh *result;
if (mesh->edges().data() == ((Mesh *)ob->data)->edges().data()) {
/* We need to duplicate data here, otherwise setting custom normals
* (which may also affect sharp edges) could
* modify original mesh, see #43671. */
result = (Mesh *)BKE_id_copy_ex(nullptr, &mesh->id, nullptr, LIB_ID_COPY_LOCALIZE);
}
else {
result = mesh;
}
const blender::Span<blender::float3> positions = result->vert_positions();
const blender::Span<MEdge> edges = result->edges();
const OffsetIndices polys = result->polys();
blender::MutableSpan<int> corner_verts = result->corner_verts_for_write();
blender::MutableSpan<int> corner_edges = result->corner_edges_for_write();
int defgrp_index;
const MDeformVert *dvert;
blender::Array<blender::float3> loop_normals;
CustomData *ldata = &result->ldata;
bke::MutableAttributeAccessor attributes = result->attributes_for_write();
bke::SpanAttributeWriter<bool> sharp_edges = attributes.lookup_or_add_for_write_span<bool>(
"sharp_edge", ATTR_DOMAIN_EDGE);
short(*clnors)[2] = static_cast<short(*)[2]>(
CustomData_get_layer_for_write(ldata, CD_CUSTOMLOOPNORMAL, corner_verts.size()));
if (use_current_clnors) {
clnors = static_cast<short(*)[2]>(
CustomData_get_layer_for_write(ldata, CD_CUSTOMLOOPNORMAL, corner_verts.size()));
loop_normals.reinitialize(corner_verts.size());
const bool *sharp_faces = static_cast<const bool *>(
CustomData_get_layer_named(&result->pdata, CD_PROP_BOOL, "sharp_face"));
blender::bke::mesh::normals_calc_loop(positions,
edges,
polys,
corner_verts,
corner_edges,
{},
result->vert_normals(),
result->poly_normals(),
sharp_edges.span.data(),
sharp_faces,
true,
result->smoothresh,
clnors,
nullptr,
loop_normals);
}
if (clnors == nullptr) {
clnors = static_cast<short(*)[2]>(
CustomData_add_layer(ldata, CD_CUSTOMLOOPNORMAL, CD_SET_DEFAULT, corner_verts.size()));
}
MOD_get_vgroup(ob, result, enmd->defgrp_name, &dvert, &defgrp_index);
if (enmd->mode == MOD_NORMALEDIT_MODE_RADIAL) {
normalEditModifier_do_radial(enmd,
ctx,
ob,
result,
clnors,
loop_normals,
enmd->mix_mode,
enmd->mix_factor,
enmd->mix_limit,
dvert,
defgrp_index,
use_invert_vgroup,
positions,
edges,
sharp_edges.span,
corner_verts,
corner_edges,
polys);
}
else if (enmd->mode == MOD_NORMALEDIT_MODE_DIRECTIONAL) {
normalEditModifier_do_directional(enmd,
ctx,
ob,
result,
clnors,
loop_normals,
enmd->mix_mode,
enmd->mix_factor,
enmd->mix_limit,
dvert,
defgrp_index,
use_invert_vgroup,
positions,
edges,
sharp_edges.span,
corner_verts,
corner_edges,
polys);
}
result->runtime->is_original_bmesh = false;
sharp_edges.finish();
return result;
}
static void initData(ModifierData *md)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(enmd, modifier));
MEMCPY_STRUCT_AFTER(enmd, DNA_struct_default_get(NormalEditModifierData), modifier);
}
static void requiredDataMask(ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
r_cddata_masks->lmask |= CD_MASK_CUSTOMLOOPNORMAL;
/* Ask for vertexgroups if we need them. */
if (enmd->defgrp_name[0] != '\0') {
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
}
}
static bool dependsOnNormals(ModifierData * /*md*/)
{
return true;
}
static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
walk(userData, ob, (ID **)&enmd->target, IDWALK_CB_NOP);
}
static bool isDisabled(const struct Scene * /*scene*/, ModifierData *md, bool /*useRenderParams*/)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
return !is_valid_target(enmd);
}
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
NormalEditModifierData *enmd = (NormalEditModifierData *)md;
if (enmd->target) {
DEG_add_object_relation(ctx->node, enmd->target, DEG_OB_COMP_TRANSFORM, "NormalEdit Modifier");
DEG_add_depends_on_transform_relation(ctx->node, "NormalEdit Modifier");
}
}
static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
return normalEditModifier_do((NormalEditModifierData *)md, ctx, ctx->object, mesh);
}
static void panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *col;
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
int mode = RNA_enum_get(ptr, "mode");
uiItemR(layout, ptr, "mode", UI_ITEM_R_EXPAND, nullptr, ICON_NONE);
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "target", 0, nullptr, ICON_NONE);
col = uiLayoutColumn(layout, false);
uiLayoutSetActive(col, mode == MOD_NORMALEDIT_MODE_DIRECTIONAL);
uiItemR(col, ptr, "use_direction_parallel", 0, nullptr, ICON_NONE);
modifier_panel_end(layout, ptr);
}
/* This panel could be open by default, but it isn't currently. */
static void mix_mode_panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *row;
uiLayout *layout = panel->layout;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "mix_mode", 0, nullptr, ICON_NONE);
uiItemR(layout, ptr, "mix_factor", 0, nullptr, ICON_NONE);
modifier_vgroup_ui(layout, ptr, &ob_ptr, "vertex_group", "invert_vertex_group", nullptr);
row = uiLayoutRow(layout, true);
uiItemR(row, ptr, "mix_limit", 0, nullptr, ICON_NONE);
uiItemR(row,
ptr,
"no_polynors_fix",
0,
"",
(RNA_boolean_get(ptr, "no_polynors_fix") ? ICON_LOCKED : ICON_UNLOCKED));
}
static void offset_panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *layout = panel->layout;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, nullptr);
int mode = RNA_enum_get(ptr, "mode");
PointerRNA target_ptr = RNA_pointer_get(ptr, "target");
bool needs_object_offset = (mode == MOD_NORMALEDIT_MODE_RADIAL &&
RNA_pointer_is_null(&target_ptr)) ||
(mode == MOD_NORMALEDIT_MODE_DIRECTIONAL &&
RNA_boolean_get(ptr, "use_direction_parallel"));
uiLayoutSetPropSep(layout, true);
uiLayoutSetActive(layout, needs_object_offset);
uiItemR(layout, ptr, "offset", 0, nullptr, ICON_NONE);
}
static void panelRegister(ARegionType *region_type)
{
PanelType *panel_type = modifier_panel_register(
region_type, eModifierType_NormalEdit, panel_draw);
modifier_subpanel_register(region_type, "mix", "Mix", nullptr, mix_mode_panel_draw, panel_type);
modifier_subpanel_register(
region_type, "offset", "Offset", nullptr, offset_panel_draw, panel_type);
}
ModifierTypeInfo modifierType_NormalEdit = {
/*name*/ N_("NormalEdit"),
/*structName*/ "NormalEditModifierData",
/*structSize*/ sizeof(NormalEditModifierData),
/*srna*/ &RNA_NormalEditModifier,
/*type*/ eModifierTypeType_Constructive,
/*flags*/ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsMapping |
eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode,
/*icon*/ ICON_MOD_NORMALEDIT,
/*copyData*/ BKE_modifier_copydata_generic,
/*deformVerts*/ nullptr,
/*deformMatrices*/ nullptr,
/*deformVertsEM*/ nullptr,
/*deformMatricesEM*/ nullptr,
/*modifyMesh*/ modifyMesh,
/*modifyGeometrySet*/ nullptr,
/*initData*/ initData,
/*requiredDataMask*/ requiredDataMask,
/*freeData*/ nullptr,
/*isDisabled*/ isDisabled,
/*updateDepsgraph*/ updateDepsgraph,
/*dependsOnTime*/ nullptr,
/*dependsOnNormals*/ dependsOnNormals,
/*foreachIDLink*/ foreachIDLink,
/*foreachTexLink*/ nullptr,
/*freeRuntimeData*/ nullptr,
/*panelRegister*/ panelRegister,
/*blendWrite*/ nullptr,
/*blendRead*/ nullptr,
};