Files
test2/source/blender/gpu/shaders/gpu_shader_codegen_lib.glsl
Clément Foucault 50283b9573 GPU: Split GLSL, C++ and metal shader defines
This makes all the defines and boiler plate code use
the generated source include system.

This makes source hierarchy more understandable.

Pull Request: https://projects.blender.org/blender/blender/pulls/146289
2025-09-15 17:22:19 +02:00

313 lines
7.2 KiB
GLSL

/* SPDX-FileCopyrightText: 2020-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include "gpu_shader_compat.hh"
float3 calc_barycentric_distances(float3 pos0, float3 pos1, float3 pos2)
{
float3 edge21 = pos2 - pos1;
float3 edge10 = pos1 - pos0;
float3 edge02 = pos0 - pos2;
float3 d21 = normalize(edge21);
float3 d10 = normalize(edge10);
float3 d02 = normalize(edge02);
float3 dists;
float d = dot(d21, edge02);
dists.x = sqrt(dot(edge02, edge02) - d * d);
d = dot(d02, edge10);
dists.y = sqrt(dot(edge10, edge10) - d * d);
d = dot(d10, edge21);
dists.z = sqrt(dot(edge21, edge21) - d * d);
return dists;
}
float2 calc_barycentric_co(int vertid)
{
float2 bary;
bary.x = float((vertid % 3) == 0);
bary.y = float((vertid % 3) == 1);
return bary;
}
/* Assumes GPU_VEC4 is color data, special case that needs luminance coefficients from OCIO. */
#define float_from_vec4(v, luminance_coefficients) dot(v.rgb, luminance_coefficients)
#define float_from_vec3(v) ((v.r + v.g + v.b) * (1.0f / 3.0f))
#define float_from_vec2(v) v.r
#define vec2_from_vec4(v) float2(((v.r + v.g + v.b) * (1.0f / 3.0f)), v.a)
#define vec2_from_vec3(v) float2(((v.r + v.g + v.b) * (1.0f / 3.0f)), 1.0f)
#define vec2_from_float(v) float2(v)
#define vec3_from_vec4(v) v.rgb
#define vec3_from_vec2(v) v.rrr
#define vec3_from_float(v) float3(v)
#define vec4_from_vec3(v) float4(v, 1.0f)
#define vec4_from_vec2(v) v.rrrg
#define vec4_from_float(v) float4(float3(v), 1.0f)
/* TODO: Move to shader_shared. */
#define RAY_TYPE_CAMERA 0
#define RAY_TYPE_SHADOW 1
#define RAY_TYPE_DIFFUSE 2
#define RAY_TYPE_GLOSSY 3
#ifdef GPU_FRAGMENT_SHADER
# define FrontFacing gl_FrontFacing
#else
# define FrontFacing true
#endif
/* Can't use enum here because not a header file. But would be great to do. */
enum ClosureType : uchar {
CLOSURE_NONE_ID = 0u,
/* Diffuse */
CLOSURE_BSDF_DIFFUSE_ID = 1u,
// CLOSURE_BSDF_OREN_NAYAR_ID = 2u, /* TODO */
// CLOSURE_BSDF_SHEEN_ID = 4u, /* TODO */
// CLOSURE_BSDF_DIFFUSE_TOON_ID = 5u, /* TODO */
CLOSURE_BSDF_TRANSLUCENT_ID = 6u,
/* Glossy */
CLOSURE_BSDF_MICROFACET_GGX_REFLECTION_ID = 7u,
// CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID = 8u, /* TODO */
// CLOSURE_BSDF_ASHIKHMIN_VELVET_ID = 9u, /* TODO */
// CLOSURE_BSDF_GLOSSY_TOON_ID = 10u, /* TODO */
// CLOSURE_BSDF_HAIR_REFLECTION_ID = 11u, /* TODO */
/* Transmission */
CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID = 12u,
/* Glass */
// CLOSURE_BSDF_HAIR_HUANG_ID = 13u, /* TODO */
/* BSSRDF */
CLOSURE_BSSRDF_BURLEY_ID = 14u,
};
struct ClosureUndetermined {
packed_float3 color;
float weight;
packed_float3 N;
ClosureType type;
/* Additional data different for each closure type. */
packed_float4 data;
};
ClosureUndetermined closure_new(ClosureType type)
{
ClosureUndetermined cl;
cl.type = type;
return cl;
}
struct ClosureOcclusion {
packed_float3 N;
};
struct ClosureDiffuse {
packed_float3 color;
float weight;
packed_float3 N;
};
struct ClosureSubsurface {
packed_float3 color;
float weight;
packed_float3 N;
packed_float3 sss_radius;
};
struct ClosureTranslucent {
packed_float3 color;
float weight;
packed_float3 N;
};
struct ClosureReflection {
packed_float3 color;
float weight;
packed_float3 N;
float roughness;
};
struct ClosureRefraction {
packed_float3 color;
float weight;
packed_float3 N;
float roughness;
float ior;
};
struct ClosureHair {
packed_float3 color;
float weight;
packed_float3 T;
float offset;
packed_float2 roughness;
};
struct ClosureVolumeScatter {
packed_float3 scattering;
float weight;
float anisotropy;
};
struct ClosureVolumeAbsorption {
packed_float3 absorption;
float weight;
};
struct ClosureEmission {
packed_float3 emission;
float weight;
};
struct ClosureTransparency {
packed_float3 transmittance;
float weight;
float holdout;
};
ClosureDiffuse to_closure_diffuse(ClosureUndetermined cl)
{
ClosureDiffuse closure;
closure.N = cl.N;
closure.color = cl.color;
return closure;
}
ClosureSubsurface to_closure_subsurface(ClosureUndetermined cl)
{
ClosureSubsurface closure;
closure.N = cl.N;
closure.color = cl.color;
closure.sss_radius = cl.data.xyz;
return closure;
}
ClosureTranslucent to_closure_translucent(ClosureUndetermined cl)
{
ClosureTranslucent closure;
closure.N = cl.N;
closure.color = cl.color;
return closure;
}
ClosureReflection to_closure_reflection(ClosureUndetermined cl)
{
ClosureReflection closure;
closure.N = cl.N;
closure.color = cl.color;
closure.roughness = cl.data.x;
return closure;
}
ClosureRefraction to_closure_refraction(ClosureUndetermined cl)
{
ClosureRefraction closure;
closure.N = cl.N;
closure.color = cl.color;
closure.roughness = cl.data.x;
closure.ior = cl.data.y;
return closure;
}
struct GlobalData {
/** World position. */
packed_float3 P;
/** Surface Normal. Normalized, overridden by bump displacement. */
packed_float3 N;
/** Raw interpolated normal (non-normalized) data. */
packed_float3 Ni;
/** Geometric Normal. */
packed_float3 Ng;
/** Curve Tangent Space. */
packed_float3 curve_T, curve_B, curve_N;
/** Barycentric coordinates. */
packed_float2 barycentric_coords;
packed_float3 barycentric_dists;
/** Hair thickness in world space. */
float hair_diameter;
/** Index of the strand for per strand effects. */
int hair_strand_id;
/** Ray properties (approximation). */
float ray_depth;
float ray_length;
uchar ray_type;
/** Is hair. */
bool is_strand;
};
GlobalData g_data;
#ifndef GPU_FRAGMENT_SHADER
/* Stubs. */
# define dF_impl(a) (float3(0.0f))
# define dF_branch(a, b, c) (c = float2(0.0f))
# define dF_branch_incomplete(a, b, c) (c = float2(0.0f))
#elif defined(GPU_FAST_DERIVATIVE) /* TODO(@fclem): User Option? */
/* Fast derivatives */
float3 dF_impl(float3 v)
{
return float3(0.0f);
}
void dF_branch(float fn, out float2 result)
{
/* NOTE: this function is currently unused, once it is used we need to check if
* `g_derivative_filter_width` needs to be applied. */
result.x = gpu_dfdx(fn) * derivative_scale_get();
result.y = gpu_dfdy(fn) * derivative_scale_get();
}
#else
/* Offset of coordinates for evaluating bump node. Unit in pixel. */
float g_derivative_filter_width = 0.0f;
/* Precise derivatives */
int g_derivative_flag = 0;
float3 dF_impl(float3 v)
{
if (g_derivative_flag > 0) {
return gpu_dfdx(v) * g_derivative_filter_width;
}
else if (g_derivative_flag < 0) {
return gpu_dfdy(v) * g_derivative_filter_width;
}
return float3(0.0f);
}
# define dF_branch(fn, filter_width, result) \
if (true) { \
g_derivative_filter_width = filter_width; \
g_derivative_flag = 1; \
result.x = (fn); \
g_derivative_flag = -1; \
result.y = (fn); \
g_derivative_flag = 0; \
result -= float2((fn)); \
}
/* Used when the non-offset value is already computed elsewhere */
# define dF_branch_incomplete(fn, filter_width, result) \
if (true) { \
g_derivative_filter_width = filter_width; \
g_derivative_flag = 1; \
result.x = (fn); \
g_derivative_flag = -1; \
result.y = (fn); \
g_derivative_flag = 0; \
}
#endif
/* TODO(fclem): Remove. */
#define CODEGEN_LIB